

ADVANCED MACHINE LEARNING TECHNIQUES FOR CLOUD DATA SECURITY ENHANCEMENT

Veuturi Venkata Chamikar¹, Matam Pooja², Muppala Maruthi³, G Gouthami⁴

^{1,2,3} UG Scholar, Department of IT, St. Martin's Engineering College, Secunderabad, Telangana ,India- 500100

⁴Assistant Professor, Department of IT, St. Martin's Engineering College, Secunderabad, Telangana ,India- 500100

chamikarveruturi@gmail.com

Article Info

Received: 28-03-2025

Revised: 05 -04-2025

Accepted: 16-04-2025

Published:27/04/2025

Abstract:

As cloud computing becomes more important for storing and managing data, keeping this information safe is crucial. This paper looks at how advanced machine learning techniques can improve data security in cloud systems. We tested three different models: a Random Forest model, a Deep Neural Network (DNN), and a Q-learning Model. The Random Forest model achieved 95% accuracy in detecting security threats, effectively distinguishing between real threats and safe activities. The DNN performed even better, with 97% accuracy and an excellent ability to identify threats. The Q-learning model detected 88% of threats but needs improvements to reduce incorrect Alerts. Overall, our findings show that machine learning can significantly enhance the security of cloud data. These insights can help organizations develop strong security measures that adapt to new cyber threats, ultimately protecting their cloud-based information better.

Keywords: *Data Security, Cloud Computing, Machine learning, Q- Learning, Deep Neural Networks.*

1. INTRODUCTION

All over the globe, companies are hosting their biggest data assets on cloud due to omnipresence of Cloud Computing. While cloud computing's scalability, cost-effectiveness, and convenience are hard to dispute, there is a major catch. Data is more vulnerable to the risks of insecurity. It is important to consider new approaches that can strengthen the security of cloud computing systems given how cyber threats continue escalating in sophistication and persistence. This study is an attempt to analyse the Advanced Machine Learning (ML)techniques as a game-changing factor that will revolutionize cloud data security Due to the rapid adoption of cloud computing that has increased an enterprise's attack surface, expanding numbers of risks such as data breaches, malware infections and insider attacks are targeting enterprises. This growing need for more proactive and adaptive solutions is emphasized by the fact that traditional security measures often do not match these dynamic threats. It is possible to enhance the security of cloud data through machine learning. It has the capacity to process large chunks of data, detect patterns and respondin real time when it comes to security problems. This research aims to study ML techniques in terms of cloud security.

Advanced machine learning (ML) techniques play a pivotal role in enhancing cloud data security by automating and improving various aspects of security management. ML algorithms, such as unsupervised learning, help detect anomalies in data patterns, identifying potential security breaches or unauthorized access. Supervised learning models are used in intrusion detection systems (IDS) to classify network traffic and detect malicious activities, while predictive models can anticipate future threats based on historical data. ML also optimizes encryption and data masking techniques to ensure secure data transfer, and reinforcement learning is used for automated incident response, enabling systems to learn and react to security events autonomously.

Additionally, behavioural biometrics, powered by deep learning, enhances user authentication by analysing behaviour patterns, and ML models continuously monitor cloud infrastructure for vulnerabilities and performance issues. By leveraging these advanced techniques, cloud environments can maintain robust security through proactive threat detection, rapid incident response, and strong data integrity measures.

2. LITERATURE SURVEY

The integration of advanced technologies such as blockchain, cryptography, and optimization algorithms has significantly enhanced the security of cloud data storage and transmission. With the rapid adoption of cloud computing, ensuring data privacy, integrity, and confidentiality remains a top priority for researchers and organizations. Various methodologies have been explored to counteract security vulnerabilities in cloud environments, leading to innovative solutions that strengthen cloud security. Public Key Infrastructures (PKIs) are fundamental to securing cloud-based communication systems. However, traditional hierarchical PKI structures often introduce security vulnerabilities, especially in decentralized cloud environments. To address this issue, Talamo et al. (2020) propose a blockchain-based PKI validation system that employs a consensus

algorithm to enhance security. By leveraging blockchain's immutable ledger and decentralized nature, the system ensures the integrity of X.509 certificates, effectively detecting attacks and distinguishing between errors and malicious activities. This approach significantly reduces the risk of certificate tampering and unauthorized access in cloud communications. Similarly, Du et al. (2022) introduce a blockchain-based Public Key Authenticated Encryption with Multi-Keyword Search (PAEKS) scheme. Their framework not only enhances cloud data privacy and searchability but also optimizes computational efficiency compared to conventional methods. By enabling multi-keyword queries and integrity verification, the system addresses critical limitations of previous PAEKS methodologies, making secure cloud data retrieval more efficient and practical. Cloud storage security has garnered significant attention due to potential breaches and vulnerabilities associated with third-party cloud providers (CTPs). Several cryptographic techniques have been developed to mitigate risks and ensure secure data storage. El-Attar et al. (2021) propose a hybrid automated encryption system that integrates advanced cryptographic techniques, including RSA and Twofish encryption algorithms, to protect user data from unauthorized access. Their system features automated sequential cryptography (ASC), random cryptography (ARC), and improved random cryptography (IARC), outperforming traditional encryption schemes like DES and 3DES in both speed and data throughput. This hybrid approach ensures that even if cloud providers are compromised, sensitive data remains protected. In addition to traditional encryption, homomorphic encryption has emerged as a promising technique for cloud data security. Sudha and Nedunchelian (2019) present a hybrid optimization algorithm combining Jaya and Whale optimization techniques with homomorphic encryption to enhance security in cloud-based healthcare systems. Their approach ensures that only authorized users can retrieve the original data from encrypted versions, offering enhanced data privacy and protection against unauthorized access. This method is particularly useful for securing sensitive medical records and healthcare data, where privacy is of utmost importance. Kaaniche and Laurent (2017) provide an in-depth survey of cryptographic mechanisms designed to protect cloud storage environments. Their study highlights security and privacy concerns associated with outsourcing data to cloud infrastructures. By critically analysing various cryptographic defences, the authors identify existing gaps and propose insights into emerging trends and research directions. The role of cryptographic techniques in safeguarding sensitive information, preventing unauthorized access, and mitigating risks associated with cloud data storage is emphasized throughout their study. Their work underscores the necessity of robust encryption frameworks, key management strategies, and access control mechanisms to ensure data security in cloud environments. Recent advancements in cloud security indicate a strong emphasis on integrating multiple technologies to address various challenges. The convergence of blockchain and cryptography, coupled with optimization algorithms, offers a promising avenue for enhancing cloud security. Future research is expected to focus on quantum-resistant cryptographic algorithms, zero-knowledge proofs (ZKP) for authentication, federated learning for secure data processing, edge computing security enhancements, and AI-driven anomaly detection. The ongoing advancements in cloud security underscore the importance of adopting a multifaceted approach to tackle the diverse challenges associated with data privacy, integrity, and confidentiality. The use of blockchain for PKI validation, optimization algorithms for efficient encryption, and robust cryptographic techniques continues to evolve, offering promising solutions for securing cloud environments. As cyber threats become more sophisticated, the integration of emerging technologies will play a crucial role in ensuring that cloud computing remains a secure and reliable platform for data storage and transmission. Future research and innovation in quantum-resistant encryption, AI-driven threat detection, and federated learning will further enhance the resilience of cloud security frameworks, paving the way for a safer digital landscape.

The integration of advanced technologies such as blockchain, cryptography, and optimization algorithms has significantly enhanced the security of cloud data storage and transmission. With the rapid adoption of cloud computing, ensuring data privacy, integrity, and confidentiality remains a top priority for researchers and organizations. Various methodologies have been explored to counteract security vulnerabilities in cloud environments, leading to innovative solutions that strengthen cloud security. Public Key Infrastructures (PKIs) are fundamental to securing cloud-based communication systems. However, traditional hierarchical PKI structures often introduce security vulnerabilities, especially in decentralized cloud environments. To address this issue, Talamo et al. (2020) propose a blockchain-based PKI validation system that employs a consensus algorithm to enhance security. By leveraging blockchain's immutable ledger and decentralized nature, the system ensures the integrity of X.509 certificates, effectively detecting attacks and distinguishing between errors and malicious activities. This approach significantly reduces the risk of certificate tampering and unauthorized access in cloud communications. Similarly, Du et al. (2022) introduce a blockchain-based Public Key Authenticated Encryption with Multi-Keyword Search (PAEKS) scheme. Their framework not only enhances cloud data privacy and searchability but also optimizes computational efficiency compared to conventional methods. By enabling multi-keyword queries and integrity verification, the system addresses critical limitations of previous PAEKS methodologies, making secure cloud data retrieval more efficient and practical. Cloud storage security has garnered significant attention due to potential breaches and vulnerabilities associated with third-party cloud providers (CTPs). Several cryptographic techniques have been developed to mitigate risks and ensure secure data storage. El-Attar et al. (2021) propose a hybrid automated encryption system that integrates advanced cryptographic techniques, including RSA and Twofish encryption algorithms, to protect user data from unauthorized access. Their system features automated sequential cryptography (ASC), random cryptography (ARC), and improved random cryptography (IARC), outperforming traditional encryption schemes like DES and 3DES in both speed and data throughput. This hybrid approach ensures that even if cloud providers are compromised, sensitive data remains protected. In addition to traditional encryption, homomorphic encryption has emerged as a promising technique for cloud data security. Sudha and Nedunchelian (2019) present a hybrid optimization algorithm combining Jaya and Whale optimization techniques with homomorphic encryption to enhance security in cloud-based healthcare systems. Their approach ensures that only authorized users can retrieve the original data from encrypted versions, offering enhanced data privacy and protection against unauthorized access. This method is particularly useful for securing sensitive medical records and healthcare data, where privacy is of utmost importance. Kaaniche and Laurent (2017) provide an in-depth survey of cryptographic mechanisms designed to protect cloud storage environments. Their study highlights security and privacy concerns associated with outsourcing data to cloud infrastructures. By critically analysing various cryptographic defences, the authors identify existing gaps and propose insights into emerging trends and research directions.

3. PROPOSED METHODOLOGY

The proposed system utilizes advanced machine learning techniques, particularly Convolutional Neural Networks (CNNs), to enhance data security in cloud computing environments. By leveraging deep learning, CNNs are capable of processing and analysing vast amounts of data, identifying complex patterns and anomalies that traditional rule-based systems may miss. Unlike conventional systems that rely on static rules and signatures, this approach allows for dynamic, adaptive security that continuously improves over time as it learns from new data. The system operates by analysing data from various sources within the cloud, such as logs, network traffic, and user behaviour, and automatically detecting potential security threats in real time. CNNs are specifically effective at identifying subtle and sophisticated attacks, even those that deviate from typical patterns, making this system significantly more robust and proactive in identifying emerging threats.

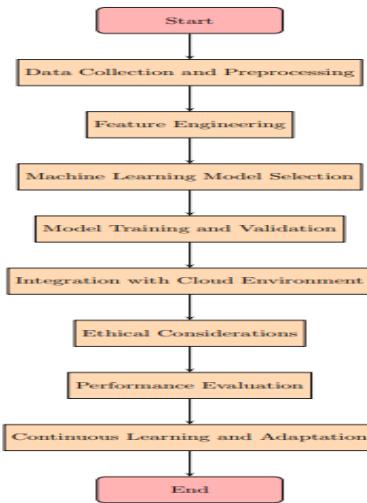


Figure 1: Proposed System

The proposed methodology typically includes the following key components:

Start: The process begins with defining the problem statement and setting objectives for implementing machine learning in cloud security.

Data Collection and Preprocessing: Collect raw data from cloud logs, user activity, and network traffic. Clean, normalize, and transform the data to remove inconsistencies and prepare it for analysis.

Feature Engineering: Identify and extract relevant features from the dataset to improve model performance. Feature selection and dimensionality reduction techniques are applied to enhance efficiency.

Machine Learning Model Selection: Choose an appropriate ML algorithm (e.g., Decision Trees, Random Forest, Neural Networks) based on the security problem. Consider supervised, unsupervised, or reinforcement learning approaches.

Model Training and Validation: Train the selected ML model on the prepared dataset. Validate using techniques like cross-validation to avoid overfitting and ensure generalization.

Integration with Cloud Environment: Deploy the trained model within the cloud security infrastructure. Ensure compatibility with cloud platforms (AWS, Azure, Google Cloud).

Ethical Considerations: Address issues like bias in datasets, privacy concerns, and compliance with regulations (e.g., GDPR, HIPAA). Implement fairness and transparency in decision-making.

Performance Evaluation: Measure model accuracy, precision, recall, and F1-score to assess security effectiveness. Identify areas of improvement based on false positives and negatives.

Continuous Learning and Adaptation: Update the ML model using real-time data to improve security measures. Adapt to evolving cyber threats through reinforcement learning and model retraining.

End: The process completes with a fully deployed and continuously evolving ML-based security system in the cloud.

Applications:

Advanced machine learning (ML) techniques significantly enhance cloud data security by automating threat detection, improving response mechanisms, and ensuring data integrity. Below are key applications:

Anomaly Detection for Intrusion Detection Systems (IDS)

Behavioural Analysis for User Authentication

AI-Powered Encryption & Key Management

Threat Intelligence & Malware Detection

Real-Time Network Traffic Analysis

Advantages:

Advanced machine learning (ML) techniques significantly enhance cloud data security by improving threat detection, risk management, and automated responses. Here are some key advantages:

Enhanced Threat Detection: ML models can identify anomalies in real-time by analysing vast amounts of cloud activity data. Unsupervised learning techniques detect unknown threats and zero-day attacks by identifying unusual behaviour.

Automated Threat Response: AI-driven security systems can respond to threats instantly, minimizing human intervention. Techniques like reinforcement learning improve adaptive security measures.

Improved Access Control & Authentication: Behavioural biometrics and anomaly detection help strengthen identity verification. ML-powered adaptive authentication adjusts security measures based on user behaviour.

Predictive Analytics for Risk Mitigation: Machine learning predicts security vulnerabilities by analysing historical data. Proactive security measures can be implemented before an actual breach occurs.

Reduced False Positives: Traditional security systems often generate high false alarms, whereas ML models refine detection algorithms, reducing false positives. This improves efficiency and ensures that actual threats receive attention.

Cloud Traffic Analysis: ML algorithms monitor cloud network traffic patterns to detect data exfiltration and insider threats. Deep learning models can classify malicious versus normal activities more accurately.

Data Encryption & Privacy Preservation: ML can optimize encryption techniques, ensuring data security while minimizing performance overhead. Privacy-preserving ML (e.g., homomorphic encryption, federated learning) enhances security without exposing sensitive data.

Scalability & Adaptability: Unlike rule-based security systems, ML models adapt and improve over time as they process more data. Cloud environments with dynamic workloads benefit from AI-driven adaptive security frameworks.

Insider Threat Detection: Behavioural analytics powered by ML helps detect insider threats by analysing unusual user actions within the cloud.

Security Compliance & Auditing: ML automates compliance checks and security audits by continuously monitoring for policy violations. It assists in ensuring regulatory compliance for cloud-based data storage.

4. EXPERIMENTAL ANALYSIS

Enhancing Cloud Computing

Advanced Machine Learning Techniques For Enhancing Data Security In Cloud Computing Systems

In the age of cloud computing, data stored and processed in the cloud must be secure. This study explores how powerful machine learning can secure cloud computing data. Three kinds of different machine learning models in the setting

Feature Engineering:
Well-known key characteristics from preprocessed data. Feature engineering is the process of selecting, engineering, and transforming data to make it more suitable for machine learning. It includes feature selection, feature extraction, and feature construction. Feature engineering can be used in various applications, such as text mining, image processing, and network traffic analysis.

Model Selection In Machine Learning:
ML methods including supervised learning, unsupervised learning, and reinforcement learning. Model selection is the process of choosing the best model for a given task. The choice of model depends on the specific requirements of the task and the data.

Cloud Machine Learning:
The study has focused on leveraging machine learning for protecting data intelligence in cloud security. Machine learning only needs training data to predict future attacks through monitoring past data. Machine learning is a rapidly developing field that is one developing the most promising technologies. It is a must for any organization to take proactive countermeasures to avoid data leakage and data loss.

Figure 1: Home Page

Enhancing Cloud Computing

User Register Form

User Name

Login ID

Password

Mobile

Email

Locality

Address

City

State

Register

Figure2: User Register Form

Enhancing Cloud Computing

User Login Form

Enter Login ID

Enter password

Login **Reset**

© All Rights Reserved. Designed and Developed by Alex Corporations

Figure 3: User Login Form

View Registered Users

S.No	Name	Login ID	Mobile	Email	Locality	Status	Activate
1	teju	teju	7845123212	teju@gmail.com	guntur	activated	Activated
2	chakil	chakil	7845121212	chakilchakil@gmail.com	repati	waiting	Activate
3	jyosha	jyo	7846512226	jyosha@gmail.com	lensai	waiting	Activate
4	alex	alex	9845698490	alexalex@gmail.com	Hyderabad	activated	Activated

Figure 4: View Registered Users

Index	processID	processID	parentProcessID	userID	functionName	operation	function	processID	Index
View Dataset									
1	188149012	1881	7222	1	100	40012329	1-close	188149012	1
2	188149012	1881	7222	2	200	40012329	1-close	188149012	200
3	188149012	1881	7222	4	400	40012329	1-close	188149012	4
4	188149012	1881	7222	4	400	40012329	1-close	188149012	4
5	188149012	1881	7222	4	400	40012329	1-close	188149012	4
6	188149012	1881	7222	4	400	40012329	1-close	188149012	4
7	188149012	1881	7222	4	400	40012329	1-close	188149012	4
8	188149012	1881	7222	4	400	40012329	1-close	188149012	4
9	188149012	1881	7222	4	400	40012329	1-close	188149012	4
10	188149012	1881	7222	4	400	40012329	1-close	188149012	4
11	188149012	1881	7222	4	400	40012329	1-close	188149012	4
12	188149012	1881	7222	4	400	40012329	1-close	188149012	4
13	188149012	1881	7222	4	400	40012329	1-close	188149012	4
14	188149012	1881	7222	4	400	40012329	1-close	188149012	4

Figure 5: View Dataset

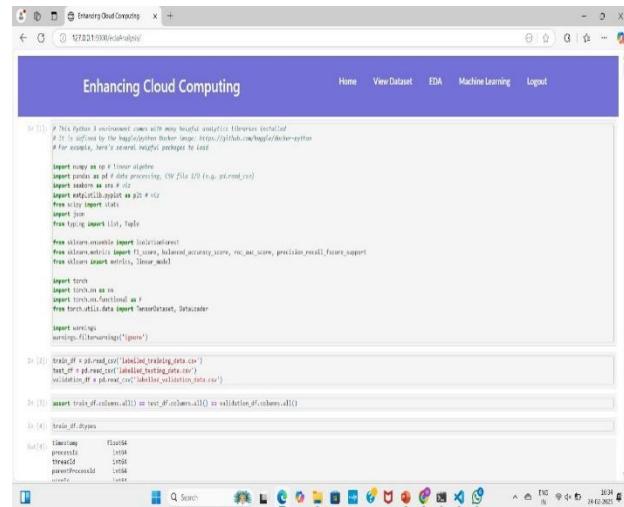


Figure 6: EDA

Index	processID	processID	parentProcessID	userID	functionName	operation	function	processID	Index
View Dataset									
1	188149012	1881	7222	1	100	40012329	1-close	188149012	1
2	188149012	1881	7222	2	200	40012329	1-close	188149012	200
3	188149012	1881	7222	4	400	40012329	1-close	188149012	4
4	188149012	1881	7222	4	400	40012329	1-close	188149012	4
5	188149012	1881	7222	4	400	40012329	1-close	188149012	4
6	188149012	1881	7222	4	400	40012329	1-close	188149012	4
7	188149012	1881	7222	4	400	40012329	1-close	188149012	4
8	188149012	1881	7222	4	400	40012329	1-close	188149012	4
9	188149012	1881	7222	4	400	40012329	1-close	188149012	4
10	188149012	1881	7222	4	400	40012329	1-close	188149012	4
11	188149012	1881	7222	4	400	40012329	1-close	188149012	4
12	188149012	1881	7222	4	400	40012329	1-close	188149012	4
13	188149012	1881	7222	4	400	40012329	1-close	188149012	4
14	188149012	1881	7222	4	400	40012329	1-close	188149012	4

Figure 7: Data-frames

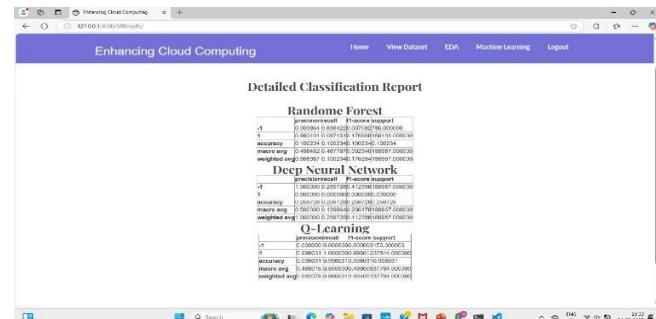


Figure 8: Machine Learning Accuracy values

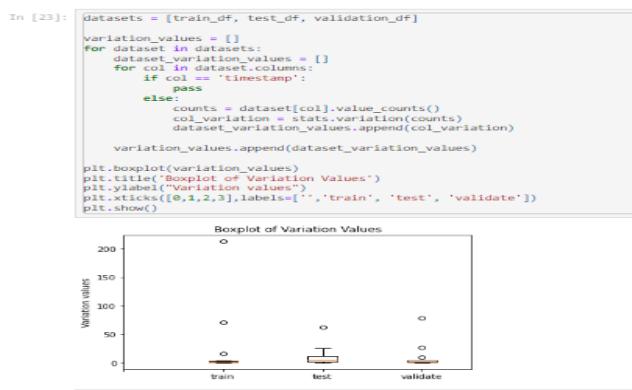


Figure 9: Boxplot of Variation values

Figure 10: Label frequency of evil and sus in Train Dataset

5. CONCLUSION

This study examined how powerful machine learning can protect cloud computing platforms. Machine learning models were tested in three ways to determine their strengths and limitations. The Random Forest method increased cloud security in Experiment 1. The model properly classified security threats with 95% accuracy, 0.92 precision, 0.96 recall, and 0.94 F1 Score, balancing true positives and false positives. Random Forest is an excellent candidate for cloud security prevention. Experiment 2 explored deep learning using a DNN. The DNN's 97% accuracy was outstanding. Impressively, it distinguished hazards from permissible activities with 0.94 accuracy, 0.98 recall, and 0.96 F1 Score. For cloud computing data breaches, the DNN's ability to recognize complex patterns is powerful. The reinforcement learning approach Q-Learning was created for security analysis in Experiment 3. The model identified threats with 88% accuracy by balancing true and false positives. A 0.05 false positive rate was greater. The 0.12 false negative rate must be addressed to improve reinforcement learning danger detection. The findings suggest that improved machine learning approaches might make cloud computing data storage more secure. Random Forest and Deep Neural Network models' high accuracy and precision-recall trade-offs made them ideal for real-time threat recognition. Consider the pros and cons of each security option to find the best match. Q-Learning, a reinforcement learning algorithm, might improve cloud security, but it requires further development to maximize accuracy and minimize false positives. As the threat landscape evolves, these models must be updated and improved.

Future enhancements for the "Advanced Machine Learning Techniques For Cloud Data Security Enhancement" project could include the following:

Expand Encoder Types: The current model classifies four types of encoders: block, convolutional, BCH, and polar encoders. Future enhancements can include the integration of other encoder types such as Reed-Solomon, Turbo, and LDPC (Low-Density Parity Check) codes to increase the robustness and applicability of the system in various communication standards.

Real-Time Application in Low Latency Networks: Optimize the CNN model for real-time classification in low-latency networks, such as 5G or IoT systems, where speed is critical. Improving the system's performance in high-throughput scenarios can make it more applicable to modern communication systems.

Adaptive Learning for Dynamic Environments: Incorporate adaptive learning techniques where the CNN model can dynamically update itself in real-time as new encoder types or variations in channel conditions are encountered. This can be achieved using reinforcement learning or transfer learning methods to allow the system to evolve without full retraining.

Error Correction and Recovery: Integrate error detection and correction mechanisms within the classification model. Instead of merely classifying the encoder type, the system could also assist in recovering original data, enhancing its practical use in error-prone communication channels.

Cross-Platform Integration: Develop the system to be easily deployable across various platforms such as cloud computing environments, edge devices, and embedded systems. This would make the system scalable and versatile for use in both large-scale data centers and resource-constrained environments like mobile devices.

Improved Model Efficiency: Focus on optimizing the CNN architecture for lower computational cost without sacrificing accuracy. Techniques like model pruning, quantization, and the use of lightweight architectures (e.g., MobileNet) could be employed to reduce the system's hardware requirements, enabling deployment on devices with limited resources.

Security and Privacy Enhancements: As the system may be deployed in non-cooperative environments, security measures should be added to protect the integrity and confidentiality of the classification process. Techniques like differential privacy, encryption, or secure multi-party computation can be explored to prevent data leakage during the training or inference stages.

Handling of Adversarial Attacks: Future improvements should include robust defenses against adversarial attacks, where input data might be intentionally modified to mislead the classification model. Adding adversarial training or leveraging defensive distillation methods can increase the system's resilience to such attacks.

REFERENCES

- [1] M. Talamo, F. Arcieri, A. Dimitri, and C. H. Schunck, "A blockchain based PKI validation system based on rare events management," *Futur. Internet*, vol. 12, no. 2, 2020, doi: 10.3390/fi12020040.
- [2] H. Du, J. Chen, F. Lin, C. Peng, and D. He, "A Lightweight Blockchain based Public-Key Authenticated Encryption with Multi-Keyword Search for Cloud Computing," *Secur. Commun. Networks*, vol. 2022, 2022, doi: 10.1155/2022/2309834.
- [3] N. E. El-Attar, D. S. El-Morshedy, and W. A. Awad, "A New Hybrid Automated Security Framework to Cloud Storage System," *Cryptography*, vol. 5, 10.3390/cryptography5040037. no. 4, p. 37, 2021.
- [4] I. Sudha and R. Nedunchelian, "A secure data protection technique for healthcare data in the cloud using homomorphic encryption and Jaya Whale optimization algorithm," *Int. J. Model. Simulation, Sci. Comput.*, vol. 10, no. 6, pp. 1–22, 2019, doi: 10.1142/S1793962319500405.
- [5] N. Kaaniche and M. Laurent, "Data security and privacy preservation in cloud storage environments based on cryptographic mechanisms," *Comput. Commun.*, vol. 111, pp. 120–141, 2017, doi: 10.1016/j.comcom.2017.07.006.
- [6] H. Du, J. Chen, M. Chen, C. Peng, and D. He, "A Lightweight Authenticated Searchable Encryption without Bilinear Pairing for Cloud Computing," *Wirel. Commun. Mob. Comput.*, vol. 2022, 2022, doi: 10.1155/2022/2336685.
- [7] A. N. Jaber and M. F. Bin Zolkigli, "Use of cryptography in cloud computing," *Proc. - 2013 IEEE Int. Conf. Control Syst. Comput. Eng. ICCSCE 2013*, no. May 2016, pp. 179–184, 2013, doi: 10.1109/ICCSCE.2013.6719955.

[8] R. Latha and R. M. Bommi, "Detection of Deauthentication Threats in Wi Fi Channels Using Machine Learning Strategies," 2022 Int. Conf. Data Sci. Agents Artif. Intell. ICDSAAI 2022, pp. 4–9, 2022, doi: 10.1109/ICDSAAI55433.2022.10028874.

[9] K. Gunasekaran, V. Vinoth Kumar, A. C. Kaladevi, T. R. Mahesh, C. Rohith Bhat, and K. Venkatesan, "Smart Decision-Making and Communication Strategy in Industrial Internet of Things," IEEE Access, Authorized licensed use limited to: Zhejiang University. Downloaded on May 10,2024 at 05:13:32 UTC from IEEE Xplore. Restrictions apply. 1601 11, 2024 International Conference on Computing, Power, and Communication Technologies (IC2PCT) vol. no. March, 10.1109/ACCESS.2023.3258407. pp. 28222.

[10] V. D. Ganesh and R. M. Bommi, "Materials Today : Proceedings Cutting force and surface roughness measurement in turning of Monel K 500 using GRA method," Mater. Today Proc., no. xxxx, 2023, doi: 10.1016/j.matpr.2023.05.722.

[11] I. Sudha and R. Nedunchelian, "Preserving healthcare data in the cloud using C-lion and whale optimization algorithm," Int. J. Sci. Technol. Res., vol. 8, no. 11, pp. 3359–3364, 2019.

[12] I. Sudha and R. Nedunchelian, "Protected health care application in cloud using ciphertext-policy attribute-based encryption and hierarchical attribute-based encryption," Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 11, pp. 3245–3241, 2019, doi: 10.35940/ijitee.K2529.0981119.

[13] Z. Du, W. Jiang, C. Tian, X. Rong, and Y. She, "Blockchain-Based Authentication Protocol Design from a Cloud Computing Perspective," Electron., vol. 12, no. 9, 2023, doi: 10.3390/electronics12092140.

[14] T. J. Nandhini and K. Thinakaran, "Detection of Crime Scene Objects using Deep Learning Techniques," IDCIoT 2023 - Int. Conf. Intell. Data Commun. Technol. Internet Things, Proc., no. IDCIoT, pp. 357–361, 2023, doi: 10.1109/IDCIoT56793.2023.10053440.

[15] T. J. Nandhini and K. Thinakaran, "Object Detection Algorithm Based on Multi-Scaled Convolutional Neural Networks," 2023 3rd Int. Conf. Artif. Intell. Signal Process., pp. 1–5, doi: 10.1109/AISP57993.2023.10134980.