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Abstract:

Tuberculosis (TB) is an infectious disease primarily caused by Mycobacterium tuberculosis, mainly affecting the lungs but potentially
spreading to other organs like the brain, kidneys, or spine. It spreads through microscopic droplets released when an infected person coughs,
sneezes, or talks. In 2021, the World Health Organization estimated that 10.6 million people worldwide were affected by TB, with 1.6 million
deaths. Notably, TB cases increased by 3.6% between 2020 and 2021. When TB bacteria enter the respiratory system, immune cells called
macrophages attempt to engulf them, but the bacteria ¢ an survive and form granulomas—dense clusters of immune cells and bacteria. Early
detection, prognosis, and identification of resistant TB cases are crucial.The objective of this work is to use deep learning Convolutional
Neural Network (CNN) to predict drug resistance and drug sensitivity in tuberculosis based on the genomic data. The existing techniques
for determining drug resistance in tuberculosis strains are laborious and include growing bacteria in the presence of drugs. Getting the
outcomes of this can take a long time. These techniques can also produce false positives or false negatives and are not always accurate. The
proposed work intends to address these shortcomings by offering a quicker and more precise way to determine drug resistance in strains of
tuberculosis. In terms of prediction performance, the proposed approach attained 97.27% accuracy. This model may be applied in clinical
applications to diagnose tuberculosis drug resistance more quickly and accurately, improving patient outcomes after treatment.
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INTRODUCTION

A bacterial infection that mostly affects the lungs but can potentially spread to other parts of the body is tuberculosis. Mycobacterium tuberculosis is the
bacteria that causes it. When an infected person coughs, sneezes or talks, they release microscopic respiratory droplets that contain the bacteria that cause
tuberculosis. Although Mycobacterium tuberculosis is the main and best-known cause of tuberculosis, other related mycobacteria can also cause
diseases that are similar to tuberculosis. The World Health Organization (WHO) estimates that 10.6 million individuals worldwide are afflicted with
tuberculosis in 2021, and 1.6 million of those cases resulted in fatalities. Additionally, the incidence rate of tuberculosis increased significantly
between 2020 and 2021 by 3.6%. While the lungs are the primary organ affected by tuberculosis, it can also damage the brain, kidneys, or spine. The
primary problem that needs to be addressed is the need for early detection, prognosis, and identification of resistant tuberculosis occurrences.Lung
infections can occur when Mycobacterium tuberculosis germs get into a person's respiratory system. After then, immune cells known as macrophages
absorb the bacteria, and these cells allow the germs to live and

proliferate. Granulomas, which are microscopic, dense aggregates containing bacteria and immune cells, may result from this. Since ancient times,
tuberculosis has been a serious threat to world health and remains so today, particularly in areas with poor access to public health resources and medical
care. Vaccination, early detection, efficient treatment, contact tracking, and public health initiatives to lower transmission are all part of the fight against
tuberculosis.Concepts such as drug sensitivity and resistance are crucial for treating tuberculosis. These words describe the reactions of the
Mycobacterium tuberculosis bacteria to the medications used in tuberculosis treatment.

LITERATURE SURVEY

Acharya, B., Acharya, A., Gautam, S., Ghimire, S.P., Mishra, G., Para- juli, N. and Sapkota, B., 2020. Advances in diagnosis of Tuberculosis:
an update into molecular diagnosis of Mycobacterium tuberculosis. Molecular biology reports, 47, pp.4065-4075.Tuberculosis (TB) is a
major cause of deaths by a single infectious agent and has now been a global public health problem due to increasing numbers of drug-
resistant cases. Early and effective treatment is crucial to prevent the emergence of drug-resistance strains. This demands the availability of
fast and reliable point-of-care (POC) diagnostic methods for effective case management. Commonly used methods to screen and diagnose
TB are clinical, immunological, microscopy, radiography, and bacterial culture. In addition, recent advances in molecular diagnostic methods
including MTBDRplus, loop-mediated isothermal amplification (LAMP), line probe assay (LPA), GeneXpert, and whole genome
sequencing (WGS) have been employed to diagnose and characterize TB. These methods can simultaneously identify Mycobacterium
tuberculosis (MTB) and mutation(s) associated with routinely used anti-TB drugs. Here, we review the use of currently available diagnostic
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methods and strategies including conventional to recently implemented next-generation sequencing (NGS) methods used to detect MTB in
clinical perspective.
Ranjitha, J., Rajan, A. and Shankar, V., 2020. Features of the bio- chemistry of Mycobacterium smegmatis, as a possible model for My-
cobacterium tuberculosis. Journal of infection and public health, 13(9), pp.1255-1264.0bjective Actinomycetes have been known to be the
great natural sources to explore antibiotics for the treatment of tuberculosis (TB). The isolation of actinomycetes from the samples in Vietnam
followed by the screening of their antimycobacterial activity was performed in this study. The metabolites isolated from the most active
strain were further evaluated for their antimycobacterial, antimicrobial and cytotoxic activity. Methods Actinomycetes were growth in culture
media, isolated and identified by colony, spore chain morphology and 16S rRNA gene sequencing. Agar diffusion assay was used for the
screening of the isolated strains against Mycobacterium smegmatis, a safety surrogate for Mycobacterium tuberculosis. The metabolites
produced from the most active strain were investigated by actinomycete fermentation, extraction and isolation from biomass and cultures.
The structures of the isolated compound were elucidated by spectral data and comparison with the reported literatures. Results 181 strains
were isolated from nine regions along the north to central Vietnam. The five most active strains against Mycobacterium smegmatis were
detected. Following the bioassay-guided result, the strain A121 (Streptomyces alboniger) was selected for further isolation of the bioactive
metabolites.
Ernest, J.P., Strydom, N., Wang, Q., Zhang, N., Nuermberger, E., Dar- tois, V. and Savic, R.M., 2021. Development of new tuberculosis
drugs: translation to regimen composition for drug-sensitive and multidrug- resistant tuberculosis. Annual review of pharmacology and
toxicology, 61, pp.495-516.Tuberculosis (TB) kills more people than any other infectious disease. Challenges for developing better
treatments include the complex pathology due to within-host immune dynamics, interpatient variability in disease severity and drug
pharmacokinetics-pharmacodynamics (PK-PD), and the growing emergence of resistance. Model-informed drug development using
quantitative and translational pharmacology has become increasingly recognized as a method capable of drug prioritization and regimen
optimization to efficiently progress compounds through TB drug development phases. In this review, we examine translational models and
tools, including plasma PK scaling, site-of-disease lesion PK, host-immune and bacteria interplay, combination PK-PD models of multidrug
regimens, resistance formation, and integration of data across nonclinical and clinical phases.We propose a workflow that integrates these
tools with computational platforms to identify drug combinations that have the potential to accelerate sterilization, reduce relapse rates, and
limit the emergence of resistance.
Singh, V. and Chibale, K., 2021. Strategies to combat multi-drug resis- tance in tuberculosis. Accounts of chemical research, 54(10), pp.2361-
2376.Drug resistance is an unavoidable consequence of the use of drugs; however, the emergence of multi-drug resistance can be managed
by accurate diagnosis and tailor-made regimens.”Antimicrobial resistance (AMR), is one of the most paramount health perils that has
emerged in the 21st century. The global increase in drug-resistant strains of various bacterial pathogens prompted the World Health
Organization (WHO) to develop a priority list of AMR pathogens. Mycobacterium tuberculosis (Mtb), an acid-fast bacillus that causes
tuberculosis (TB), merits being one of the highest priority pathogens on this list since drug-resistant TB (DR-TB) accounts for ~29% of
deaths attributable to AMR. In recent years, funded collaborative efforts of researchers from academia, not-for-profit virtual R&D
organizations and industry have resulted in the continuous growth of the TB drug discovery and development pipeline. This has so far led to
the accelerated regulatory approval of bedaquiline and delamanid for the treatment of DR-TB.
Jamal, S., Khubaib, M., Gangwar, R., Grover, S., Grover, A. and Hasnain, S.E., 2020. Artificial Intelligence and Machine learning based
prediction of resistant and susceptible mutations in Mycobacterium tuberculosis. Scientific reports, 10(1), p.5487.Tuberculosis (TB), an
infectious disease caused by Mycobacterium tuberculosis (M.tb), causes highest number of deaths globally for any bacterial disease
necessitating novel diagnosis and treatment strategies. High-throughput sequencing methods generate a large amount of data which could be
exploited in determining multi-drug resistant (MDR-TB) associated mutations. The present work is a computational framework that uses
artificial intelligence (Al) based machine learning (ML) approaches for predicting resistance in the genes rpoB, inhA, katG, pncA,
gyrA and gyrB for the drugs rifampicin, isoniazid, pyrazinamide and fluoroquinolones. The single nucleotide variations were represented by
several sequence and structural features that indicate the influence of mutations on the target protein coded by each gene. We used ML
algorithms - naive bayes, k nearest neighbor, support vector machine, and artificial neural network, to build the prediction models. The
classification models had an average accuracy of 85% across all examined genes and were evaluated on an external unseen dataset to
demonstrate their application. Further, molecular docking and molecular dynamics simulations were performed for wild type and predicted
resistance causing mutant protein and anti-TB drug complexes to study their impact on the conformation of proteins to confirm the observed
phenotype.

PROPOSED METHODOLOGY
The project "Automated TB Drug Resistance Prediction using CT and Deep Learning" is implemented entirely using Python. The interface
for this project is created using Python's Tkinter library. The prediction system utilizes Convolutional Neural Networks (CNN) and Gradient
Boosted Trees (GBT) algorithms. In this project, the user needs to upload a CT scan image and provide some basic details like age, gender,
and medical history. After uploading the image and entering the details, the user can click the predict button to predict TB drug resistance
based on the provided inputs. The system offers an accuracy score between 0 and 1, indicating the reliability of the prediction.
Data pre-processing is a process of preparing the raw data and making it suitable for a machine learning model. It is the first and crucial step
while creating a machine learning model. When creating a machine learning project, it is not always a case that we come across the clean
and formatted data. And while doing any operation with data, it is mandatory to clean it and put in a formatted way. So, for this, we use data
pre-processing task. A real-world data generally contains noises, missing values, and maybe in an unusable format which cannot be directly
used for machine learning models.
Data pre-processing is required tasks for cleaning the data and making it suitable for a machine learning model which also increases the
accuracy and efficiency of a machine learning model.Once the model has been trained, it must be evaluated on a separate test dataset to
measure its performance. This phase tests the model's ability to generalize to new, unseen data. Performance metrics like accuracy, precision,
recall, and F1 score are often used to evaluate how well the model is detecting spam while minimizing false positives and false negatives.
The test set acts as a proxy for how the model will behave in real-world applications.A real-world data generally contains noises, missing
values, and maybe in an unusable format which cannot be directly used for machine learning models.
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Figure 1: Proposed System Architecture
Data Split :Once a dataset has been collected, it is typically divided into three subsets: training, testing, and validation (or hold-out) data.
The training data is used to train the machine learning model, allowing the system to learn patterns and relationships within the data. The
testing data is used to evaluate the model’s performance on previously unseen examples, providing an estimate of how well the model will
perform in the real world. The hold-out set or validation set is used for hyperparameter tuning or to check the model’s performance
periodically during the training phase. A common split is 70% for training, 15% for testing, and 15% for validation.
Pre-processing :Before feeding the data into a machine learning model, pre-processing is essential to clean and prepare the data. This may
involve steps such as removing irrelevant information (e.g., special characters, stopwords), converting text to lowercase, normalizing text
(e.g., stemming or lemmatization), and handling missing values. Pre- processing also includes handling outliers or noisy data that could
disrupt the model’s learning process. The goal is to ensure that the data is in a clean and usable format, optimizing the learning process.
Train : The training phase involves using the labeled dataset to train a machine learning model. The algorithm learns from the data by
adjusting its internal parameters to minimize error. During training, the system is exposed to a large number of examples (both spam and
legitimate messages) to help it distinguish between the two. This phase is crucial because the quality of training directly impacts the
performance of the model. If the model is trained on a representative dataset, it is more likely to perform well on unseen data.
Test :Once the model has been trained, it must be evaluated on a separate test dataset to measure its performance. This phase tests the model's
ability to generalize to new, unseen data. Performance metrics like accuracy, precision, recall, and F1 score are often used to evaluate how well
the model is detecting spam while minimizing false positives and false negatives. The test set acts as a proxy for how the model will behave in
real-world applications.
Hold-out :The hold-out set is used to ensure that the model’s performance is evaluated on data that was not used during training. The hold-
out set is typically kept aside during the training process, and once the model is trained and fine-tuned, the hold-out data is used for final
evaluation. This step helps to prevent overfitting, where the model becomes too tailored to the training data and fails to generalize well to
new data.
Applications :
Early Detection of Drug Resistance: Deep learning models can analyze CT scans to predict drug resistance in TB patients, enabling timely
intervention and personalized treatment plans.Treatment Outcome Prediction: By analyzing longitudinal CT scans, these systems can predict
treatment outcomes, helping clinicians adjust therapies to improve patient recovery rates.Reduction in Diagnostic Time: Automated systems
can significantly reduce the time required for diagnosing drug-resistant TB compared to traditional culture-based methods.Resource
Optimization: In resource-limited settings, these tools can provide cost-effective and efficient diagnostic support, reducing the burden on
healthcare systems.
Enhanced Accuracy: Deep learning models can improve diagnostic accuracy by identifying subtle patterns in CT scans that may be missed
by human radiologists.Support for Clinical Decision-Making: These systems can assist clinicians in making informed decisions about drug
regimens and treatment strategies.Public Health Monitoring: Automated tools can contribute to large-scale monitoring and surveillance of
drug-resistant TB, aiding in public health planning and policy-making.Research and Development: These technologies can be used in
research to study the progression of TB and the effectiveness of new drugs or treatment protocols.
Advantages :

Improved Diagnostic Speed: The system can rapidly analyze CT images and predict drug resistance, significantly reducing the time compared
to traditional methods like culture tests.High Accuracy: Deep learning algorithms can detect subtle patterns in CT images that may be
overlooked by human experts, leading to more accurate predictions.
Personalized Treatment Plans: By identifying drug resistance profiles early, the project allows for tailored treatment strategies, improving
patient outcomes.Cost-Effective Solution: Once developed, the system can provide diagnostics at a lower cost, making advanced care
accessible, especially in resource-limited settings.
Scalability: The system can handle large volumes of data, enabling widespread screening in high TB-burden areas.Non-Invasive Diagnosis:
Unlike certain laboratory tests, CT-based prediction is a non-invasive approach, enhancing patient comfort.
Enhanced Resource Allocation: Faster and more accurate predictions allow healthcare systems to better allocate resources, focusing efforts
where they are most needed.Aid to Radiologists: The system can serve as a decision-support tool, assisting radiologists in diagnosing
complex cases with greater confidence.
Reduction in Multidrug-Resistance Spread: Early identification of drug resistance helps curb the spread by ensuring timely and appropriate
treatments.Research Contributions: The project can contribute valuable data and insights to the field, driving further advancements in TB
diagnosis and treatment.

EXPERIMENTAL ANALYSIS
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CONCLUSION
In the proposed work, we have developed a deep learning model for the classification of tuberculosis drug response using CT images. The prediction is made
using a deep learning CNN model. This study demonstrates the effectiveness of deep leaming techniques, with the proposed CNN-based model achieving a
97.27% classification accuracy. CNN can increase precision and speed up the diagnosis and treatment of tuber- culosis, enabling more rapid evaluations of
drug sensitivity and resistance. This can therefore result in more specialized and successful treatment plans. The proposed model does not exhibit overfitting
and yielded good results in the testing set. Additionally, the creation and implementation of the user interface helps radiologists diagnose tuberculosis in real-
time. Overall, the proposed approach can greatly support radiolo- gists in making more informed medical judgments when it comes to determining the
treatment response of samples of tuberculosis. It is important to understand that using CNNs to predict drug resistance is just one factor in the process; other
factors that must be considered in order to provide reliable predictions include choosing the right model architecture and having a high-quality dataset. It is
imperative to collaborate with domain experts and physicians to ensure that the model’s predictions align with clinical practice and decision-making.
CNN MODEL
Input Data Preparation: Collect CT scan images of patients' lungs, which will serve as the input data for the CNN model. Ensure that the
images are in a consistent format and resolution.Labeling Data: Annotate the images with labels indicating whether the TB strain is drug-
resistant or drug-sensitive. These labels are essential for supervised learning.
Normalization: Normalize the pixel values of the CT scan images to a range (e.g., 0 to 1) to ensure consistent input for the
CNN.Augmentation: Apply data augmentation techniques such as rotation, flipping, and scaling to increase the diversity of the training
dataset and improve the model's robustness.
Convolutional Layers: The core components of the CNN are the convolutional layers, which apply convolutional filters to the input images
to extract features.Filters/Kernels: Small matrices that scan over the input image, detecting patterns such as edges, textures, and shapes.Stride
and Padding: Parameters that control how the filters move over the image and how the image boundaries are handled.
Activation Function: Apply a non-linear activation function, typically the Rectified Linear Unit (ReLU), to introduce non-linearity into the
model.
ReLU Activation: f(x)=max/0{(0,x)f(x) = \max(0, X)
Pooling Layers: Reduce the spatial dimensions of the feature maps, retaining the most important information and reducing computational
complexity.Max Pooling: Takes the maximum value from each patch of the feature map.
Fully Connected Layers: After several convolutional and pooling layers, flatten the feature maps and pass them through fully connected
layers to perform classification.Dense Layers: Connect every neuron in one layer to every neuron in the next layer.
Loss Function: Choose a suitable loss function to measure the difference between the predicted and actual labels. For binary classification,
the binary cross-entropy loss is commonly used.
Optimizer: Select an optimizer to update the model's weights based on the loss gradients. Common choices include Adam, SGD, and
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RMSprop.Adam Optimizer: An adaptive learning rate optimizer that combines the advantages of both SGD and RMSprop.Training Data:
Feed the preprocessed CT scan images and corresponding labels into the CNN model. Batch Size: The number of training samples processed
before the model's weights are updated.

Backpropagation: Calculate the gradients of the loss function with respect to the model's weights and update the weights to minimize the
loss.Validation: Use a portion of the data as a validation set to monitor the model's performance and prevent overfitting.

Classification Report: Generate a detailed classification report including metrics such as precision, recall, F1-score, and support for each
class.Test Data: Input new CT scan images into the trained CNN model to predict drug resistivity or drug sensitivity.

Output: The model outputs the predicted class label (e.g., drug-resistant, drug-sensitive) along with a confidence score indicating the
probability of the prediction.This step-by-step explanation outlines how the CNN algorithm processes CT scan images to predict drug
resistivity and drug sensitivity in TB patients, leveraging deep learning techniques to achieve accurate and efficient predictions.
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