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ABSTRACT:

Trends in bird population sizes are an important indicator in nature conservation but measuring
suchsizes is a very difficult, labour intensive process. Enormous progress in audio signal processing
and pat- tern recognition in recent years makes it possible to incorporate automated methods into
the detection of bird vocalisations. These methods can be employed to support the census of
population sizes. We report about a study testing the feasibility of bird monitoring supported by
automatic bird song detection. In particular, we describe novel algorithms for the detection of the
vocalisations of two endangered bird species and show how these can be used in automatic habitat
mapping. These methods are based on detecting temporal patterns in a given frequency band
typical for the species. Special effort is put intothe suppression of the noise present in real-world
audio scenes. Our results show that even in real-world recording conditions high .
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Introduction:

In order to evaluate the impact of human activities on popula- tions of wild animals and to decide on the most effective
actions for nature conservation, we need fundamental information onthe extent of changes in the living environment.
Birds are a good indicator for changes in biodiversity because they are distributed over a wide range of landscapes, are easy
to detect in comparisonto other animal groups and we have a good knowledge on the biol-ogy of most of the species. It is a
fortunate fact that, at least in most European countries, we have huge associations of skilled and expe- rienced birdwatchers, who
willingly give their knowledge to non-profit service and support monitoring programs. Due to the activity of birdwatchers, data
regarding trends in population sizes for cer-tain European bird species has been recorded and made availablesince 1980
(Greqgory et al., 2005). Different standardised methodsfor bird census have been developed (Bibby et al., 1992). Most ofthem
are based on the mapping of singing males, assuming that the number of territorial males is equal to the number of
breedingpairs. The most widely used method for estimating the number of breeding birds is based on point counts where all
individuals heardand seen from stationary places are estimated (Klvariova and Vor“isek, 2007).

Complementing traditional approaches, vocalisations of birds serving for territory maintenance and mate attraction can
be usedfor an automated acoustic monitoring of bird populations (Bran- des, 2008; Frommolt et al., 2008). The main
advantage of such anautomated bioacoustic approach, as compared to previous meth- ods, lies in the long-term recording
in the absence of an observer.It allows to estimate bird numbers in ecologically sensitive areas (like nature reserves) or in
areas that are difficult to access (for example large reed habitats). Even nocturnal birds and birds withlow vocal activity
could thus be effectively counted. In addition tothe need of an applicable autonomous recording device, the greatest
challenge is the development of appropriate pattern recognition algorithms giving reliable results even in complex
acoustic environments. In order to apply acoustic methods forthe monitoring of bird species, we have to solve two
problems. We need pattern recognition algorithms for the automatic detec- tion and identification of bird species and we
need appropriate techniques for the estimation of the number of individuals.
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However, these works mostly deal with relatively simple signals without back- ground noise. The
number of detected calls was used as a criterionto assess the occurrence of migrating birds. For noisy
environments, hidden Markov models were successfully applied to frequency modulated sounds
(Brandes, 2008; Trifa et al., 2008).

In this work we report about an approach using pattern recog- nition techniques for continuous
bird monitoring. Our techniquesare based on event detection and repetition rate estimation of bird
song elements. Additionally, the algorithms use noise estimation from frequency bands known not
to contain the bird’s vocalisa- tions and apply them to an effective noise reduction. They can beused
in parallel with traditional monitoring methodology to yield methods with improved speed and
reproducibility in those cases where reliable detectors for bird vocalisations are available. In con- trast
to other applications our algorithms have been designed spe-cifically for certain endagered target
species. This approach was chosen in order to improve recognition rates even under poor acoustic
conditions and it leads to a larger range covered by a sin-gle sensor unit in comparison to human
observers and algorithmsrequiring high signal-to-noise ratios. Moreover, we apply this methodology
to a quantitative survey of a real bird population yielding automatic map generation of breeding
territories for oneof the considered bird species.

1. Pattern recognition for animal sounds

In comparison to other fields in pattern recognition, little work has been carried out regarding
animal sound recognition. Never- theless, a wide variety of methods and animal species have been
examined. In previous studies, bird song recognition with hidden Markov models has been proven to
be a useful tool in the recogni-tion of bird song elements (Kogan et al., 1998). In this case, record-ings
were made under laboratory conditions with captive birds and microphones close to the cages.

The most obvious candidates for species recognition by sound are birds. But a lot of other species
have also been subject to efforts in automated recognition, for example, crickets and grasshoppers
(Schwenker et al., 2003; Farr and Chesmaore, 2007), marine mam-mals like whales and dolphins
(Deecke et al., 1999: Brown and Miller, 2007; Mellinger et al., 2007), frogs and bats ([Obrist et al.,
2004). Methods like these are of interest in applications such as monitoring for the presence of certain
species in an area, behav- ioural studies, assessing the impact of anthropogenic noise on ani- mal
vocalisations and many others.

Currently, there are no guidelines for the direct application of standard methods from machine
learning to pattern recognition problems in time dependent data. The main problem here is how to
decide which parts of a signal are to be used as input for such methods. Often, this problem is dealt
with by applying segmentationalgorithms. Unfortunately, this is equivalent to finding the startingand
ending positions of animal vocalisations or their segments which is extremely difficult. This is
particularly true for natural audio scenes where current solutions tend to be unreliable becauseof low
signal-to-noise ratios. If, however, this gap is bridged in some
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way or the other, numerous classification algorithms are available for application. The classical dynamic
time warping algorithm Delleret al., 1993 has found application in cases where animal vocalisa- tions
are not too variable and can thus be recognised by template matching (Brown and Miller, 2007). Neural
networks present an obvious candidate for pattern classification. In addition to bird calls (Mills, 2000)
and bird song elements (Nickerson et al., 2006), such networks have been applied to the recognition of
animal species likemarine mammals (Deecke et _al., 1999) and crickets (Schwenker et al., 2003).
Self-organising maps have also been used for various classification tasks concerning animal sounds
(Mitsakakis et al., 1996; Somervuo and Harma, 2003; Placer et al., 2006). Also, decisiontree classifiers
like C4.5 (Quinlan, 1993) have been used for bird songrecognition (Taylor, 1995). When regarding
spectrograms of animalvocalisations, the idea of applying image analysis methods springs to the mind,
and several such approaches have been reported (Obristet al., 2004; Brandes et al., 2006).

Several feature representations for animal sounds have been pro-posed. Because of the tonal quality
of many bird songs, sinusoidal modelling is a promising feature extraction step for bird song recog-
nition and has been studied extensively in this context (Harma et al.,2003). Often, however, animal
vocalisations are not very well repre-sented using the Fourier transform. This is the case when
vocalisa-tions are noise-like in the sense that their energy spreads over a broad frequency range.
Wavelets have been proposed as an alterna- tive for analysing such sounds. They have been shown to
concentrateenergy in comparatively few wavelet coefficients for sounds which otherwise need many
Fourier coefficients for their representation (Selin et al., 2007). In (Possart, 2002; Seekings and
Potter, 2003), wavelets have been applied as feature extractors for the classifica-tion of bird and
whale songs. In the latter case improvements over spectrogram matching techniques have been
achieved. Here, wave- lets were also introduced as a means to tackle the segmentation problem
described above. In (Fagerlund and Harma., 2005), otherrepresentations than wavelets have been
proposed. For example, MFCCs have been found to give good representations in such cases. Moreover,
some bird songs are rich in harmonic structure, a fact thatcan be used for their recognition (Harmé and
Somervuo, 2004). Moregenerally, several sets of features for the representation of bird songshave been
compared in (Somervuo et al., 2006). Still, the recognitionof bird calls in natural environments remains
a great challenge (Tanttu et al., 2006). This is caused by the main source of complexity in natural audio
scenes: the presence of multiple sound sources overlapping in time and frequency.

2. Bird song detectors

In this section, we describe algorithms designed for the purpose of detecting the presence of species
specific vocalisations. The two target species, the Eurasian bittern (Botaurus stellaris) and the Sa-vi’s
warbler (Locustella luscinioides), were chosen for their value for nature conservation. They are
indicator species for extended reed beds. The two types of special purpose algorithms describedin
this section are tailored for different types of signals. The first algorithm to be described will be
useful for detecting very simplespectral events in the presence of broadband noise. The second
algorithm deals with signals characterised by the periodic repeti- tion of simple elements which is
often encountered in animal vocalisations.

2.1. Simple events: the Eurasian bittern

The most obvious indication of the presence of the Eurasian bit- tern is the booming vocalisation of
the male. Acoustical monitoring allows for passive investigation of bittern activity.
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The call of the Eurasian bittern is very simple. It is almost com-pletely characterised by its centre
frequency of about 150 Hz. Calls typically occur in call sequences with a characteristic repetition
frequency. In low noise conditions, this call can be detected by finding energy peaks in a suitable
frequency band. Fig. 1 shows aspectrogram of the bittern call. Each call begins with a short seg-ment
at a slightly higher frequency. This part, however, cannot be used for pattern recognition because it
can no longer be de- tected reliably in the presence of noise or at larger distances fromthe animal.

In order to achieve sufficient frequency resolution in low fre- quency bands, input signals are
downsampled to 6 kHz prior to further analysis. The signal is analysed with a sliding window of 21

ms length. Downsampling increases the effective window length to 170 ms.
Let Sdx; tP be the windowed power spectrum of a downsampled

input signal s. The energy weighted novelty N-, for a frequency range from “ to h at time t is defined
byfixed factor a controls how much influence the noise measure has in the combined criterion. Values
for a; ‘v; hs; ‘n, and h, are found experimentally. In particular, the values for ‘, and h, are de-rived from
a training set by spectrogram inspection. Suitable val-ues for a are in a range from 5 to 10.

Using the feature B!S] directly for finding bittern calls still leads to a high number of false positive
detections due to noise. We can, however, use the fact that the bittern usually calls in sequences with
almost constant length pauses between calls. Fig. 3a shows the features BiS] for a 97-min recording
from our study site (see Section 4.1). The recording is characterised by a high amount of noise
caused by trains, wind, and water. Direct interpretation of the features would lead to a large number
of false positive detec- tions of the bittern call.

This feature sequence measures the strength of the autocorrela- tion at lags a ... a p h — 1 representing typical call repetition rates. We
subtract the same measure for lags b ... b b kK — 1 indicating shorter repetition rates in order to remove the impact of noise events showing
short repetition rates. Finally, candidate positions
for the bittern call can be found from 8 by peak picking combined
with thresholding.

2.2. Element repetition: Savi’s warbler

The Savi’s warbler has a very characteristic song formed by the continuous repetition of
simple song elements at an almost con- stant rate of roughly 50 repetitions per second. Most
of the war- bler’s song’s energy is found in the frequency band between 3.8 and 8 kHz.
When recording this song from a great distance, the lowest frequency .
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Fig. 3. Features BIiS] indicating activity in the frequency band characteristic for the Eurasian bittern
after noise removal (a) and their windowed autocorrelation Ads; tP (b) indicating call repetitions.



3. Results for a real-world monitoring scenario
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In order to evaluate our pattern recognition algorithms, we ap- plied it to recordings attained at Lake Parstein in the north-east of Germany
(federal state Brandenburg) in 2006 and 2007. The north- ern part of the lake is surrounded by extended reed belts providing breeding habitats
for the two target species. Recording was con- ducted in a project with the aim to examine the applicability of pattern recognition methods as
a tool for monitoring bird vocalisa- tions. A four-channel stationary microphone array of cardioid microphones (Beyerdynamic MC 930,
Sennheiser ME 64) was usedon several positions at the lake shore, from a lookout, and from a boat. The best recordings of vocalisations from
the reed zone were achieved when the microphones were placed on a boat on the lake. In the best case, calls of the bittern could be recorded
over dis- tances of about 1 km. Acoustic data were acquired by an EdirolR4 field recorder at a sampling rate of 48 kHz and 16 bit accuracy.
Recordings were performed at dusk and during night in order to cover audio scenes with a complexity level somewhere between the simple
situation of a laboratory recording and the extremely complex situation of bird choirs at daytime.

R. Bardeli et al. /Pattern Recognition Letters 31 (2010) 1524—-1534
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Fig. 6. The presence of elements repeated with a given repetition rate is estimated using autocorrelation-based features. (a) Spectrogram of the analysed signal. In the first
half of the signal, a Savi’s warbler’s song is clearly visible. (b) Corresponding autocorrelation curves Ay for successive frames. (c) Fourier transformed autocorrelation curves
after subtraction of the flanking band’s features and (d) Extracted element repetition periods and corresponding domination values. Frames indicate detected warbler songs.

3.1. Acoustic environment at the study site
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Fig. 7. Spectrograms visualising biogenic noise at the study site during the night (a) and in the morning (b). Both spectrograms show the song of Savi’s warbler at just below
4 kHz.

stein. The recordings are from five different days, some of them were taken from a boat, others from the lakeshore. In Table 1, wegive the
number of time positions reported by the algorithm, the number of false positive detections (reported positions where no bittern activity is
audible) and the number of false negative detec-tions (positions, where bittern activity is audible, which were notreported by the algorithm).

The number of false positive detections is very much dependent on the acoustical situation. False positive rates were especially high on Day
3 and Day 5 for different reasons. On Day 3, a lot ofspeech is present in the recording. Especially in the beginning of the recording, a
lengthy description of the recording equipmentis spoken directly into the microphones and leads to a high numberof false positives. While
this kind of problem can often be elimi- nated before starting the analysis process, it still shows a typical problem met in long-term monitoring
situations. When a lot of recording material from a field experiment is to be analysed, it is not always feasible to manually remove spoken
annotations of the recording sessions. In that case it is a desirable property for detection algorithms to cope with this type of data.

On Day 5, the role of speech is replaced by wind rhythmicallyimpacting on the microphone. Most of the false positives can be explained
by these two effects. Some of the false positives may also
be due to the fact that the autocorrelation feature 8 is computedfrom overlapping windows. This might result in finding one call se-quence
twice at different time positions.

False negatives are seldom found with our algorithm, which is a satisfying result. They only occur in two situations: first, extremely silent
calls are sometimes dismissed, especially when there are few consecutive calls. Second, our method for noise reduction in the features
sometimes leads to a masking effect. When the energyin the band used for estimating noise levels is significantly higherthan the energy
in the band used for detecting the bittern call, thebittern call can be removed from the features although the call is clearly visible in the
spectrogram. Such masking effects also occurin human hearing (Zwicker and Fastl, 1999) and can be the causefor calls which are
undetectable by human listeners.

Altogether, our algorithm is a very helpful tool in analysing thepresence of the Eurasian bittern. Currently, the main problem is the
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high number of false positives from wind. How seriously thisaffects the utility of the algorithm depends on the task to be solved. For
example, if the algorithm is used to demonstrate the presenceof the Eurasian bittern in an area, most of the false positives can bedisposed
of by removing all reported positions with low values of

&. This would result in dropping detections of short sequences of
low calls of the bittern which is bearable as long as some longer or louder calls are present. If detecting very low calls is crucial thenan

additional feature discriminating wind from bittern calls .
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Fig. 8. Spectrograms visualising anthropogenic noise (a) and wind noise (b) at the study site. In this case noise is caused by a train passing by in the distance. Both
spectrograms show calls of the Eurasian bittern in a noisy context ((a) from second 18 and (b) from second 9).

Table 1
Recognition results for the Eurasian bitter on five observation days.

Recording  Duration Detections  False False
(min:s) positives negatives

Day 1 15:21 3 0 0

Day 2 15:41 9 0 0

Day 3 116:51 74 20 7

Day 4 174:30 77 12 2

Day 5 97:15 83 52 1

Sum 419:38 246 84 10

needed. In this context, it is possible to detect calls that are all butinaudible to the human ear.

3.2. Results for Savi’s warbler

The recordings used for evaluating the detector for Savi’s war-bler, have been attained during the sunrise and sunset periods. They
contain a wide range of different birdsongs as well as a mul-titude of background noises. From a database containing several hundred hours
of such recordings, an evaluation excerpt of 19 h has been composed to representatively cover the whole range of
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Table 3
Number of breeding Savi’'s warblers in two different areas at the Lake Parstein estimated by
two different methods.

Westernreed bed Easternbed reed Total
2007 2008 2007
Method 2008 2007 2008
(A)Mapping by experiencedobserver 15 14 9 15 24 29

(B)Application of pattern recognition algorithm and GPS
data 14 16 10 15 24 31
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Fig. 9. Estimation of breeding territories of Savi’s warblers along the Western reed beds at Lake Parstein in the years 2007 and 2008. A — results from mapping by an
experienced observer; B — results from the analysis of sound recordings by pattern recognition algorithm and estimating the position by GPS data. The estimated breeding
territories are indicated by black circles. Reed beds are displayed as white areas. The solid grey line shows the GPS track of the boat tours.
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becomes much simpler if a separation of the songs is possible. Though not reflected in the above evaluation, individual localisa-tion of
multiple contributing warblers is also facilitated by the cur-rent recording setup.

4. Application of bird song detectors to the monitoring of Savi’swarblers

In our work, we could already successfully apply the pattern recognition algorithm for the Savi’s warbler described above to the
monitoring of the population of this species at our study site at Lake Parstein. For this purpose, we examined songposts of thewarblers at
two different reed areas three times each year during the breeding seasons in the period from April to June in 2007 and 2008. In order to
cover a more extended area, we decided to use a slow-moving small boat equipped with an electric motor. Itwas driven at constant speed
(approximately 30 m/min) alongthe reed beds, keeping a distance of about 20 m from the vegeta- tion. During the boat trip, continuous
sound recordings were takenusing two directional microphones (Sennheiser MKH 70) arranged at a 90 degree angle and facing towards the
reeds. The position ofthe boat was continuously acquired by a GPS device (Garmin Geko).

On the sound recordings, songs of Savi’s warbler were detected by the pattern recognition algorithm described in Section 2.2. De- tected
songs with a domination value exceeding a fixed threshold were considered for mapping. The location of song posts was determined concerning
the following criteria. If the domination va- lue was higher for the track recorded by the rear-facing micro- phone, a time mark was set to the
beginning of the detected song because in this case the boat is moving away from the song- post and closest to it at the beginning of the song.
If it was higher for the track recorded by the forward-facing microphone, the endof the detected song was marked respectively. If the total
durationof a detected song sequence was longer than 160 s such long se- quences could only be explained as overlapping songs from neigh-
bouring birds (for 332 songs uttered during morning hours, 95% areshorter than 161 s in duration, most of them considerably). There- fore,
additional time marks were added at a distance of 160 s inthis sequence. Finally, the location of the birds was assessed onthe basis of
the synchronised GPS data. The expected song post positions were estimated by first finding the boat position fromthe GPS track using the
time markers. This position was then pro- jected into the reed bed.

In addition to the automated observations, an experienced sup-plementary observer on the boat marked every encountered ani- mal in
a map as a control test. According to the criteria established for the monitoring program for common breeding birds, we counted a warbler
as territorial for both the automated and direct observation when it was observed at least two times a year at the same or nearly the same
place.

Applying the two different approaches to two different reed areas in two subsequent years, we found a high consistency inthe number
of breeding pairs (Table 3). The maps of the spatial dis-tribution of the territories estimated by the different methods re- veal large similarities
as well (Fig. 9). Even though the positions of song posts estimated by different ways did not match com- pletely, the accuracy of the
results is sufficient for purposes of long-term monitoring.

5. Conclusion

The computational evaluation of monitoring recordings intro- duces potent technology complementary to the existing meansfor
assessing animal populations. Using robust feature extraction
methods, the detectors introduced in the preceding sections fea- ture a high detection precision even when used with badly condi-tioned
recordings.

For less specific animal population surveys, the introduced fea-tures may be combined and used for the detection of a wider rangeof
animal species. Several approaches to detecting multiple species using a general feature set have been published (Farnsworth, 2005; Brandes,
2008; Selin et al., 2007; Fagerlund, 2007). However, whenworking with unsupervised recordings performed in an acousti- cally
unpredictable area, a great amount of overlap between differ-ent bird vocalisations and other noise sources may occur. In this case, the
use of general feature sets may be problematic, particu- larly because the mix of different vocalisations is likely to be re- flected in a
complex mix in the feature space. As there is a high degree of variability of such mixtures when considering real sce- narios, the proper
training of corresponding classifiers may be a difficult task and can result in considerably less reliable detectionoutputs. In such cases,
we therefore recommend the use of highlycustomised detectors which are tailored to the recognition of a small set of species only. An
elaborate acoustic scene analysis, also detecting various noise sources, should be considered for further research on large-scale species
recognition. In particular, the im- pact of wind on microphones could be detected by using band- width and entropy estimates for strong
signal components. In the proposed detectors, the acoustic background is accounted for by using features from an individually shaped
flanking band, used for filtering ambiguous events. This flanking band strategy is suit-able for a wide range of animal sounds. Moreover,
the feature extraction and classification methods developed in this project show further potential for successful application in the
detection of a variety of other species. For example, the periodicity featuresused in the Savi’s warbler detector also reflect elementary
param-eters of calls from frogs or crickets.

In combination with recorded GPS data tracks, as described in
Section 5, robust localisation and mapping of Savi’s warbler territo-ries has been achieved. The synchronised audio and GPS tracks alsoenable
the application of detectors for other species.

Consequently, acoustic mapping could be successfully appliedto the survey of the selected species. Since the combination of sound
recordings and GPS tracks allows highly standardised dataacquisition, this methodology is appropriate for future use even by observers
with limited knowledge of bird songs. Moreover, weare currently improving the present pattern recognition algorithmin order to allow
discrimination of neighbouring and simulta- neously singing individuals to guarantee a more autonomous andautomated analysis of the
sound recordings. Thus, the populationof the species discussed above could be assessed in a precise man-ner. In contrast to the monitoring
of nocturnal migrating birds by flight calls where the number of calls was a rough measure for assessing the intensity of migration (Hill
and Huppop, 2008; Schra- ma et al., 2008), the actual number of territorial males and there- fore the number of breeding pairs was
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estimated in our study. In general, this promising approach could also be used for other birdspecies living in reed beds.

For the monitoring of population sizes using stationary recording devices, the proposed algorithms could be combined with existing
source separation techniques. This is planned for future research. In particular, the four-channel microphone setup was chosen for
applying an acoustic beamforming routine previous to the detection step. Thereby, multiple signal sources should first be separated and
then analysed separately. In addi- tion to a simplified estimation of the number of individuals pres- ent, the signal-to-noise ratio will also
be improved for each separated signal part. This should result in more precise detec- tions and thus improve the accuracy of the derived
population estimations.
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