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A B S T R A C T : 
 

Trends in bird population sizes are an important indicator in nature conservation but measuring 

such sizes is a very difficult, labour intensive process. Enormous progress in audio signal processing 

and pat- tern recognition in recent years makes it possible to incorporate automated methods into 

the detection of bird vocalisations. These methods can be employed to support the census of 

population sizes. We report about a study testing the feasibility of bird monitoring supported by 

automatic bird song detection. In particular, we describe novel algorithms for the detection of the 

vocalisations of two endangered bird species and show how these can be used in automatic habitat 

mapping. These methods are based on detecting temporal patterns in a given frequency band 

typical for the species. Special effort is put into the suppression of the noise present in real-world 

audio scenes. Our results show that even in real-world recording conditions high . 
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Introduction: 
 

In order to evaluate the impact of human activities on popula- tions of wild animals and to decide on the most effective 

actions for nature conservation, we need fundamental information on the extent of changes in the living environment. 

Birds are a good indicator for changes in biodiversity because they are distributed over a wide range of landscapes, are easy 

to detect in comparison to other animal groups and we have a good knowledge on the biol- ogy of most of the species. It is a 

fortunate fact that, at least in most European countries, we have huge associations of skilled and expe- rienced birdwatchers, who 

willingly give their knowledge to non- profit service and support monitoring programs. Due to the activity of birdwatchers, data 

regarding trends in population sizes for cer- tain European bird species has been recorded and made available since 1980 

(Gregory et al., 2005). Different standardised methods for bird census have been developed (Bibby et al., 1992). Most of them 

are based on the mapping of singing males, assuming that the number of territorial males is equal to the number of 

breedingpairs. The most widely used method for estimating the number of  breeding birds is based on point counts where all 

individuals heard and  seen  from  stationary  places  are  estimated  (Klvaňová  and Vorˇíšek, 2007). 

Complementing traditional approaches, vocalisations of birds serving for territory maintenance and mate attraction can 

be used for an automated acoustic monitoring of bird populations (Bran- des, 2008; Frommolt et al., 2008). The main 

advantage of such an automated bioacoustic approach, as compared to previous meth- ods, lies in the long-term recording 

in the absence of an observer. It allows to estimate bird numbers in ecologically sensitive areas (like nature reserves) or in 

areas that are difficult to access (for example large reed habitats). Even nocturnal birds and birds with low vocal activity 

could thus be effectively counted. In addition to the need of an applicable autonomous recording device, the greatest 

challenge is the development of appropriate pattern recognition algorithms giving reliable results even in complex 

acoustic environments. In order to apply acoustic methods for the monitoring of bird species, we have to solve two 

problems. We need pattern recognition algorithms for the automatic detec- tion and identification of bird species and we 

need appropriate techniques for the estimation of the number of individuals. 
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However, these works mostly deal with relatively simple signals without back- ground noise. The 

number of detected calls was used as a criterion to assess the occurrence of migrating birds. For noisy 

environments, hidden Markov models were successfully applied to frequency modulated sounds 

(Brandes, 2008; Trifa et al., 2008). 

In this work we report about an approach using pattern recog- nition techniques for continuous 

bird monitoring. Our techniques are based on event detection and repetition rate estimation of bird 

song elements. Additionally, the algorithms use noise estimation from frequency bands known not 

to contain the bird’s vocalisa- tions and apply them to an effective noise reduction. They can be used 

in parallel with traditional monitoring methodology to yield methods with improved speed and 

reproducibility in those cases where reliable detectors for bird vocalisations are available. In con- trast 

to other applications our algorithms have been designed spe- cifically for certain endagered target 

species. This approach was chosen in order to improve recognition rates even under poor acoustic 

conditions and it leads to a larger range covered by a sin- gle sensor unit in comparison to human 

observers and algorithms requiring high signal-to-noise ratios. Moreover, we apply this methodology 

to a quantitative survey of a real bird population yielding automatic map generation of breeding 

territories for one of the considered bird species. 

 

1. Pattern recognition for animal sounds 
 

In comparison to other fields in pattern recognition, little work has been carried out regarding 

animal sound recognition. Never- theless, a wide variety of methods and animal species have been 

examined. In previous studies, bird song recognition with hidden Markov models has been proven to 

be a useful tool in the recogni- tion of bird song elements (Kogan et al., 1998). In this case, record- ings 

were made under laboratory conditions with captive birds and microphones close to the cages. 

The most obvious candidates for species recognition by sound are birds. But a lot of other species 

have also been subject to efforts in automated recognition, for example, crickets and grasshoppers 

(Schwenker et al., 2003; Farr and Chesmore, 2007), marine mam- mals like whales and dolphins 

(Deecke et al., 1999; Brown and Miller, 2007; Mellinger et al., 2007), frogs and bats ([Obrist et al., 

2004). Methods like these are of interest in applications such as monitoring for the presence of certain 

species in an area, behav- ioural studies, assessing the impact of anthropogenic noise on ani- mal 

vocalisations and many others. 

Currently, there are no guidelines for the direct application of standard methods from machine 

learning to pattern recognition problems in time dependent data. The main problem here is how to 

decide which parts of a signal are to be used as input for such methods. Often, this problem is dealt 

with by applying segmentation algorithms. Unfortunately, this is equivalent to finding the starting and 

ending positions of animal vocalisations or their segments which is extremely difficult. This is 

particularly true for natural audio scenes where current solutions tend to be unreliable because of low 

signal-to-noise ratios. If, however, this gap is bridged in some 
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way or the other, numerous classification algorithms are available for application. The classical dynamic 

time warping algorithm Deller et al., 1993 has found application in cases where animal vocalisa- tions 

are not too variable and can thus be recognised by template matching (Brown and Miller, 2007). Neural 

networks present an obvious candidate for pattern classification. In addition to bird calls (Mills, 2000) 

and bird song elements (Nickerson et al., 2006), such networks have been applied to the recognition of 

animal species like marine mammals  (Deecke et  al.,  1999)  and  crickets (Schwenker et al., 2003). 

Self-organising maps have also been used for various classification tasks concerning animal sounds 

(Mitsakakis et al., 1996; Somervuo and Härmä, 2003; Placer et al., 2006). Also, decision tree classifiers 

like C4.5 (Quinlan, 1993) have been used for bird song recognition (Taylor, 1995). When regarding 

spectrograms of animal vocalisations, the idea of applying image analysis methods springs to the mind, 

and several such approaches have been reported (Obrist et al., 2004; Brandes et al., 2006). 

Several feature representations for animal sounds have been pro- posed. Because of the tonal quality 

of many bird songs, sinusoidal modelling is a promising feature extraction step for bird song recog- 

nition and has been studied extensively in this context (Härmä et al., 2003). Often, however, animal 

vocalisations are not very well repre- sented using the Fourier transform. This is the case when 

vocalisa- tions are noise-like in the sense that their energy spreads over a broad frequency range. 

Wavelets have been proposed as an alterna- tive for analysing such sounds. They have been shown to 

concentrate energy in comparatively few wavelet coefficients for sounds which otherwise need many 

Fourier coefficients for their representation (Selin et al., 2007). In (Possart, 2002; Seekings and 

Potter, 2003), wavelets have been applied as feature extractors for the classifica- tion of bird and 

whale songs. In the latter case improvements over spectrogram matching techniques have been 

achieved. Here, wave- lets were also introduced as a means to tackle the segmentation problem 

described above. In (Fagerlund and Härmä, 2005), other representations than wavelets have been 

proposed. For example, MFCCs have been found to give good representations in such cases. Moreover, 

some bird songs are rich in harmonic structure, a fact that can be used for their recognition (Härmä and 

Somervuo, 2004). More generally, several sets of features for the representation of bird songs have been 

compared in (Somervuo et al., 2006). Still, the recognition of bird calls in natural environments remains 

a great challenge (Tanttu et al., 2006). This is caused by the main source of complexity in natural audio 

scenes: the presence of multiple sound sources overlapping in time and frequency. 

 

2. Bird song detectors 
 

In this section, we describe algorithms designed for the purpose of detecting the presence of species 

specific vocalisations. The two target species, the Eurasian bittern (Botaurus stellaris) and the Sa- vi’s 

warbler (Locustella luscinioides), were chosen for their value for nature conservation. They are 

indicator species for extended reed beds. The two types of special purpose algorithms described in 

this section are tailored for different types of signals. The first algorithm to be described will be 

useful for detecting very simple spectral events in the presence of broadband noise. The second 

algorithm deals with signals characterised by the periodic repeti- tion of simple elements which is 

often encountered in animal vocalisations. 

 

2.1. Simple events: the Eurasian bittern 

 
The most obvious indication of the presence of the Eurasian bit- tern is the booming vocalisation of 

the male. Acoustical monitoring allows for passive investigation of bittern activity. 
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The call of the Eurasian bittern is very simple. It is almost com- pletely characterised by its centre 

frequency of about 150 Hz. Calls typically occur in call sequences with a characteristic repetition 

frequency. In low noise conditions, this call can be detected by finding energy peaks in a suitable 

frequency band. Fig. 1 shows a spectrogram of the bittern call. Each call begins with a short seg- ment 

at a slightly higher frequency. This part, however,  cannot be used for pattern recognition because it 

can no longer be de- tected reliably in the presence of noise or at larger distances from the animal. 

In order to achieve sufficient frequency resolution in low fre- quency bands, input signals are 

downsampled to 6 kHz prior to further analysis. The signal is analysed with a sliding window of 21 

ms length. Downsampling increases the effective window length to 170 ms. 
Let Sðx; tÞ be the windowed power spectrum of a downsampled 

input signal s. The energy weighted novelty N‘;h for a frequency range from ‘ to h at time t is defined 

byfixed factor a controls how much influence the noise  measure has in the combined criterion. Values 

for a; ‘b; hb; ‘n, and hn are found experimentally. In particular, the values for ‘b and hb are de- rived from 

a training set by spectrogram inspection. Suitable val- ues for a are in a range from 5 to 10. 

Using the feature B½S] directly for finding bittern calls still leads to a high number of false positive 

detections due to noise. We can, however, use the fact that the bittern usually calls in sequences with 

almost constant length pauses between calls. Fig. 3a shows the  features  B½S] for  a  97-min  recording  

from  our  study  site  (see Section 4.1). The recording is characterised by a high amount of noise 

caused by trains, wind, and water. Direct interpretation of the features would lead to a large number 

of false positive detec- tions  of  the  bittern  call.   
   
This feature sequence measures the strength of the autocorrela- tion at lags a . . .  a þ h — 1 representing typical call repetition rates. We 

subtract the same measure for lags b . . .  b þ k — 1 indicating shorter repetition rates in order to remove the impact of  noise events showing 

short repetition rates. Finally, candidate positions 

for the bittern call can be found from Ae by peak picking combined 

with thresholding. 

 

2.2. Element repetition: Savi’s warbler 
 

The Savi’s warbler has a very characteristic song formed by the continuous repetition of 

simple song elements at an almost con- stant rate of roughly 50 repetitions per second. Most 

of the war- bler’s song’s energy is found in the frequency band between 3.8 and 8 kHz. 

When recording this song from a great distance, the lowest frequency .



 

             
 

 

 

                                                    ijaiem.com/Nov 2022/ Volume 11/Issue 2/Article No-1/10-28 

                                                                                                                                           ISSN: 2319-4847 

 
 

 

 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 
 

 
 

 
 

 
 

 

 

Fig. 2. Spectrogram S of a recording containing the call of the Eurasian bittern (marked by boxes) as well as broadband noise (a). The impact of this noise on the novelty score 

N‘b ;hb 
½S] (b) is removed by subtracting the weighted low-pass filtered novelty N‘n ;hn  ½S] (c) estimated from a neighbouring frequency band, resulting in a combined feature B½S] 

(d). 
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Fig. 3.  Features B½S] indicating activity in the frequency band characteristic for  the Eurasian bittern 

after noise  removal (a) and their windowed autocorrelation Aðs; tÞ (b) indicating call repetitions. 
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3. Results for a real-world monitoring scenario 

 
In order to evaluate our pattern recognition algorithms, we ap- plied it to recordings attained at Lake Parstein in the north-east of Germany 

(federal state Brandenburg) in 2006 and 2007. The north- ern part of the lake is surrounded by extended reed belts providing breeding habitats 

for the two target species. Recording was con- ducted in a project with the aim to examine the applicability of pattern recognition methods as 

a tool for monitoring bird vocalisa- tions. A four-channel stationary microphone array of cardioid microphones (Beyerdynamic MC 930, 

Sennheiser ME 64) was used on several positions at the lake shore, from a lookout, and from a boat. The best recordings of vocalisations from 

the reed zone were achieved when the microphones were placed on a boat on the lake. In the best case, calls of the bittern could be recorded 

over dis- tances of about 1 km. Acoustic data were acquired by an Edirol R4 field recorder at a sampling rate of 48 kHz and 16 bit accuracy. 

Recordings were performed at dusk and during night in order to cover audio scenes with a  complexity  level  somewhere between the simple 

situation of a laboratory recording and the extremely complex situation of bird choirs at daytime. 
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Fig. 5. The ability of the novelty features to reflect song element onsets depends on the subband. This is illustrated by an artificial example of a spectrogram (a). The sharpness 

of the novelty curves (b) depends on the frequency band from which they are extracted. The solid novelty curve is extracted from frequency bins 1–3, the dashed curve from 

bins 2–4, and the dot-dashed curve from bins 3–5. 
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Fig. 6. The presence of elements repeated with a given repetition rate is estimated using autocorrelation-based features. (a) Spectrogram of the analysed signal. In the first 

half of the signal, a Savi’s warbler’s song is clearly visible. (b) Corresponding autocorrelation curves AeN   
for successive frames. (c) Fourier transformed autocorrelation curves 

after subtraction of the flanking band’s features and (d) Extracted element repetition periods and corresponding domination values. Frames indicate detected warbler songs. 

 
3.1. Acoustic environment at the study site 
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Fig. 7. Spectrograms visualising biogenic noise at the study site during the night (a) and in the morning (b). Both spectrograms show the song of Savi’s warbler at just below 

4 kHz. 

 

stein. The recordings are from five different days, some of them were taken from a boat, others from the lakeshore. In Table 1, we give the 

number of time positions reported by the algorithm, the number of false positive detections (reported positions where no bittern activity is 

audible) and the number of false negative detec- tions (positions, where bittern activity is audible, which were not reported by the algorithm). 

The number of false positive detections is very much dependent on the acoustical situation. False positive rates were especially high on Day 

3 and Day 5 for different reasons. On Day 3, a lot of speech is present in the recording. Especially in the beginning of the recording, a 

lengthy description of the recording equipment is spoken directly into the microphones and leads to a high number of false positives. While 

this kind of problem can often be elimi- nated before starting the analysis process, it still shows a typical problem met in long-term monitoring 

situations. When a lot of recording material from a field experiment is to be analysed, it is not always feasible to manually remove spoken 

annotations  of the recording sessions. In that case it is a desirable property for detection algorithms to cope with this type of data. 

On Day 5, the role of speech is replaced by wind rhythmically impacting on the microphone. Most of the false positives can be explained 

by these two effects. Some of the false positives may also 

be due to the fact that the autocorrelation feature  Ae is computedfrom overlapping windows. This might result in finding one call se- quence 

twice at different time positions. 

False negatives are seldom found with our algorithm, which is a satisfying result. They only occur in two situations: first, extremely silent 

calls are sometimes dismissed, especially when there are few consecutive calls. Second, our method for noise reduction in the features 

sometimes leads to a masking effect. When the energy in the band used for estimating noise levels is significantly higher than the energy 

in the band used for detecting the bittern call, the bittern call can be removed from the features although the call is clearly visible in the 

spectrogram. Such masking effects also occur in human hearing (Zwicker and Fastl, 1999) and can be the cause for calls which are 

undetectable by human listeners. 

Altogether, our algorithm is a very helpful tool in analysing the presence of the Eurasian bittern. Currently, the main problem is the 
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high number of false positives from wind. How seriously this affects the utility of the algorithm depends on the task to be solved. For 

example, if the algorithm is used to demonstrate the presence of the Eurasian bittern in an area, most of the false positives can be disposed 

of by removing all reported positions with low values of 

Ae . This would result in dropping detections of short sequences of 

low calls of the bittern which is bearable as long as some longer or louder calls are present. If detecting very low calls is crucial then an 

additional feature discriminating wind from bittern calls . 
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Fig. 8. Spectrograms visualising anthropogenic noise (a) and wind noise (b) at the study site. In this case noise is caused by a train passing by in the distance. Both 

spectrograms show calls of the Eurasian bittern in a noisy context ((a) from second 18 and (b) from second 9). 

 
 

 
Table 1 

Recognition results for the Eurasian bitter on five observation days. 
 

Recording Duration 

(min:s) 

Detections False 

positives 

False 

negatives 

Day 1 15:21 3 0 0 

Day 2 15:41 9 0 0 

Day 3 116:51 74 20 7 

Day 4 174:30 77 12 2 

Day 5 97:15 83 52 1 

Sum  419:38 246 84 10 

 
needed. In this context, it is possible to detect calls that are all but inaudible to the human ear. 

 

 
3.2. Results for Savi’s warbler 

 
The recordings used for evaluating the detector for Savi’s war- bler, have been attained during the sunrise and sunset periods. They 

contain a wide range of different birdsongs as well as a mul- titude of background noises. From a database containing several hundred hours 

of such recordings, an evaluation excerpt of 19 h has been composed to representatively cover the whole range of 
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Table 3 
Number of breeding Savi’s warblers in two different areas at the Lake Parstein estimated by 

two different methods. 
 

 
 

Method 

Western reed bed 
 

2007    2008 

Eastern bed 

2007 

reed 
 

 
2008 

Total 
 

 
2007 

 

 
 

2008 

(A) Mapping by experienced observer 

(B) Application of pattern recognition algorithm and GPS 

data 

15 

 
14 

14 

 
16 

9 

 
10 

15 

 
15 

24 

 
24 

29 

 
31 
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Fig. 9. Estimation of breeding territories of Savi’s warblers along the Western reed beds at Lake Parstein in the years 2007 and 2008. A – results from mapping by an 

experienced observer; B – results from the analysis of sound recordings by pattern recognition algorithm and estimating the position by GPS data. The estimated breeding 

territories are indicated by black circles. Reed beds are displayed as white areas. The solid grey line shows the GPS track of the boat tours. 
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becomes much simpler if a separation of the songs is possible. Though not reflected in the above evaluation, individual localisa- tion of 

multiple contributing warblers is also facilitated by the cur- rent recording setup. 

 

4. Application of bird song detectors to the monitoring of Savi’s warblers 

 
In our work, we could already successfully apply the pattern recognition algorithm for the Savi’s warbler described above to the 

monitoring of the population of this species at our study site at Lake Parstein. For this purpose, we examined songposts of the warblers at 

two different reed areas three times each year during the breeding seasons in the period from April to June  in 2007 and 2008. In order to 

cover a more extended area, we decided to use a slow-moving small boat equipped with an electric motor. It was driven at constant speed 

(approximately 30 m/min) along the reed beds, keeping a distance of about 20 m from the vegeta- tion. During the boat trip, continuous 

sound recordings were taken using two directional microphones (Sennheiser MKH 70) arranged at a 90 degree angle and facing towards the 

reeds. The position of the boat was continuously acquired by a GPS device (Garmin Geko). 

On the sound recordings, songs of Savi’s warbler were detected by the pattern recognition algorithm described in Section 2.2. De- tected 

songs with a domination value exceeding a fixed threshold were considered for mapping. The location of song posts was determined concerning 

the following criteria. If the domination va- lue was higher for the track recorded by the rear-facing micro- phone, a time mark was  set  to  the  

beginning  of  the  detected song because in this case the boat is moving away from the song- post and closest to it at the beginning of the song. 

If it  was higher for the track recorded by the forward-facing microphone, the end of the detected song was marked respectively. If the total 

duration of a detected song sequence was longer than 160 s such long se- quences could only be explained as overlapping songs from neigh- 

bouring birds (for 332 songs uttered during morning hours, 95% are shorter than 161 s in duration, most of them considerably). There- fore, 

additional time marks were added at a distance of 160 s in this sequence. Finally, the location of the birds was assessed on the basis of 

the synchronised GPS data. The expected song post positions were estimated by first finding the boat position from the GPS track using the 

time markers. This position was then pro- jected into the reed bed. 

In addition to the automated observations, an experienced sup- plementary observer on the boat marked every encountered ani- mal in 

a map as a control test. According to the criteria established for the monitoring program for common breeding birds, we counted a warbler 

as territorial for both the automated and direct observation when it was observed at least two times a year at the same or nearly the same 

place. 

Applying the two different approaches to two different reed areas in two subsequent years, we found a high consistency in the number 

of breeding pairs (Table 3). The maps of the spatial dis- tribution of the territories estimated by the different methods re- veal large similarities 

as well (Fig. 9). Even though the positions of song posts estimated by different ways did not match com- pletely, the accuracy of the 

results is sufficient for purposes of long-term monitoring. 

 

5. Conclusion 

 
The computational evaluation of monitoring recordings intro- duces potent technology complementary to the existing means for 

assessing animal populations. Using robust feature extraction 
methods, the detectors introduced in the preceding sections fea- ture a high detection precision even when used with badly condi- tioned 

recordings. 

For less specific animal population surveys, the introduced fea- tures may be combined and used for the detection of a wider range of 

animal species. Several approaches to detecting multiple species using a general feature set have been published (Farnsworth, 2005; Brandes, 

2008; Selin et al., 2007; Fagerlund, 2007). However, when working with unsupervised recordings performed in an acousti- cally 

unpredictable area, a great amount of overlap between differ- ent bird vocalisations and other noise sources may occur. In this case, the 

use of general feature sets may be problematic, particu- larly because the mix of different vocalisations is likely to be re- flected in a 

complex mix in the feature space. As there is a high degree of variability of such mixtures when considering real sce- narios, the proper 

training of corresponding classifiers may be a difficult task and can result in considerably less reliable detection outputs. In such cases, 

we therefore recommend the use of highly customised detectors which are tailored to the recognition of a small set of species only. An 

elaborate acoustic scene analysis, also detecting various noise sources, should be considered for further research on large-scale species 

recognition. In particular, the im- pact of wind on microphones could be detected by using band- width and entropy estimates for strong 

signal components. In the proposed detectors, the acoustic background is accounted for by using features from an individually shaped 

flanking band, used for filtering ambiguous events. This flanking band strategy is suit- able for a wide range of animal sounds. Moreover, 

the feature extraction and classification methods developed in this project show further potential for successful application in the 

detection of a variety of other species. For example, the periodicity features used in the Savi’s warbler detector also reflect elementary 

param- eters of calls from frogs or crickets. 

In combination with recorded GPS data tracks, as described in 

Section 5, robust localisation and mapping of Savi’s warbler territo- ries has been achieved. The synchronised audio and GPS tracks also enable 

the application of detectors for other species. 

Consequently, acoustic mapping could be successfully applied to the survey of the selected species. Since the combination of sound 

recordings and GPS tracks allows highly standardised data acquisition, this methodology is appropriate for future use even by observers 

with limited knowledge of bird songs. Moreover, we are currently improving the present pattern recognition algorithm in order to allow 

discrimination of neighbouring and simulta- neously singing individuals to guarantee a more autonomous and automated analysis of the 

sound recordings. Thus, the population of the species discussed above could be assessed in a precise man- ner. In contrast to the monitoring 

of nocturnal migrating birds by flight calls where the number of calls was a rough measure for assessing the intensity of migration (Hill 

and Hüppop, 2008; Schra- ma et al., 2008), the actual number of territorial males and there- fore the number of breeding pairs was 
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estimated in our study. In general, this promising approach could also be used for other bird species living in reed beds. 

For the monitoring of population sizes using stationary recording devices, the proposed algorithms could be combined with existing 

source separation techniques. This is planned for future research. In particular, the four-channel microphone setup was chosen for 

applying an acoustic beamforming routine previous to the detection step. Thereby, multiple signal sources should first be separated and 

then analysed separately. In addi- tion to a simplified estimation of the number of individuals pres- ent, the signal-to-noise ratio will also 

be improved for each separated signal part. This should result in more precise detec- tions and thus improve the accuracy of the derived 

population estimations. 
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