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ABSTRACT:

In this study, we simulated a real-world scenario to see how well an automated system could
identify bird sounds. We rigorously avoided any kind of human interaction during the training of
our classification algorithms using a crowdsourced dataset consisting of audio recordings of birds.
Therefore, the method may be used to analyze collections of different species with the use of
crowdsourced collecting for species labeling. We used a realistic number of candidate classes,
representative of the kinds of numbers found in the actual world, to test the bird sound
identification system's performance. Approaches: Within the training dataset's crowdsourced
recordings, we used a threshold selection approach to distinguish between clear bird sound and
quiet. The test data was derived from carefully selected recordings and was selected to align with
an application scenario where the user chooses a segment of pure bird sound and feeds it to the
identification system without any further information. Because of their popularity and relative
simplicity, we looked at two classic classification methods: a k-Nearest Neighbor (kNN) classifier
that uses histogram-based features and a Support Vector Machine (SVM) that uses time-
summarization features. In order to make the class judgments more reliable and easier to
understand, we looked at using a certainty measure that was based on the classifiers' output
probabilities.

e Outcomes: Even though we claim that the k Nearest Neighbor classifier provides somewhat
more flexibility, our findings show that both identification approaches performed similarly. In
addition, we demonstrate that using an The reliability of categorization findings may be
valuablely and consistently gauged by using the outcome certainty measure.

 Broader implications: Our research into probabilistic classification methodologies and use of
generic training data directly contribute to the creation of a practical system for identifying bird
sounds, which could have global applications. This system can adapt to the field's variable number
of candidate species and classes. We go even beyond by demonstrating how the certainty metrics
linked to identification results may greatly enhance the system's overall practical utility.

Keywords: Automatic bird sound recognition, Crowd-sourced training data,
Machine Learning, Real-world performance evaluation, Flexible geo-temporal

species selection,Probabilistic uncertainty measure, Classification rejection option
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Introduction

Over the last decade rapid advances in the sensing capabilities, data storage, network
connectivity and computation power of mobile devices have occurred. This has been
recognized as a unique opportunity for the deployment of biological recording systems to
detect and identify biodiversity using mobile device applications (August etal. 2015).
The widespread user base of such devices, as well as the ability to geo-tag & time-stamp
observations and to exchange data makes the intelligent gathering of biodiversity
information at a massive scale a real possibility. The potential of such methods to underpin
the design of data-driven species population models, ecosystem sustainability evaluation
and biodiversity protection strategies has been realised in publicly available, either

automatic or crowd-sourced, identification applications for

birds (ChirpOMatic, Warblr, BirdSongID, Merlin Bird Photo ID)!, bats (BatMobile, Echo
Meter Touch Bat Detector) 2, cetaceans (Automatic Whale Detector) 3, insects (Cicada
Hunt)* and plants (Plantifier, NatureGate, Leafsnap, Plantsnap, Wild Flower Id)>.

The use of such approaches to enable automatic bird sound detection and
identification started receiving research attention some two decades ago (see e.g. Anderson
et al. 1996). In recent years there have been a number of studies carried out to investigate
the effectiveness of different audio feature extraction methods and classification algorithms
for bird sound identification (see for example Somervuo et al. 2006; Brandes 2008a,b; Trifa
etal. 2008; Acevedo et al. 2009; Kirschel et al. 2009; Lakshminarayanan et al. 2009; Farina
et al. 2011; Towsey et al. 2013; Wimmer et al. 2013; Stowell & Plumbley 2014b).
Identification methods have also been used in the context of audio identification of
vocalisations from species, such as bats (see e.g. Walters et al. 2012; Zamora-Gutierrez et

al. 2016). More recently, the development of new recognition methods is mainly carried
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and presented as part of online competitions® (see Stowell et al. 2016; Xie et al. 2018 and
references therein). The method of choice in these more recent developments is
predominantly that of deep convolutional neural networks operating on 2D spectrograms
treated as images. Our work does not aim to investigate‘best classification’ in the narrow
machine learning sense. We consider instead the pipeline for creation of detection
algorithms, focusing on the role of data for both training and testing as well as issues of

labelling.

First, with the exception of Lopes et al. 2011, Chou & Ko 2011, Stowell & Plumbley
2014a,b and the most recent online BirdClef competitions, most of the research undertaken
to date presents automated classification results associated with approximately 5 to 20
species of birds. This number of candidate classes/species is far below the number of
vocalizing avian species that are likely to be encountered in the field. For example, data
from the BirdTrack project” for the region of Oxford, UK (an area of nine 10-km squares
around the city of Oxford) collected by the British Trust for Ornithology list a total of
approximately 240 species in an annual cycle® with the number of occurring species per
week ranging from approximately 80 to 140 (with a mean of 110). An automated
classification system deployed in the field would therefore have to operate on a
considerably larger set of species than typically investigated in most studies so far and
probably around 50-100 classes/species in a typical deployment scenario.

Second, for a species identification method to be scalable to global application, the
classifier’s training method needs to be applicable to as many of the total number of

vocalizing avian species -namely some 10000 species that are found worldwide.
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assembling training data for such a number of classes and, more importantly, relying on
afew individual experts for segmenting and annotating adequate volumes of training data,
is thus a major undertaking and not practicable for most regions of the world. This fact
renders inapplicable a large number of classification methods presented in the literature
so far, especially those that rely on manual segmentation to the syllable or phrase level (see
e.g. Anderson et al. 1996; Chen & Maher 2006; Vilches et al. 2006; Leeet al. 2008; Trifa et
al. 2008; Acevedo et al. 2009; Vallejo & Taylor 2009; Wei & Blumstein 2011; Aide etal. 2013;
Tsai et al. 2014; Tsai & Xue 2014). On the other hand, a publically available database of bird
sounds exists, with the sounds both recorded and annotated ina crowd-sourced manner -
albeit not at the syllable or phrase level- and provides nearly worldwide coverage of bird
species data which is constantly enriched. This database isthe xeno-canto project (xeno-
canto.org). The identification methods we consider in this paper rely on data obtained from
the xeno-canto data source in a manner that is directly and automatically repeatable for any
selection of bird species from any region of the world.

Third, we find that classification methodologies that allow the straightforward and
flexible use of time-of-year and location information for the selection of candidate classes
(bird species) on-the-spot, for example the k nearest neighbours (kNN), have received
virtually no attention in the existing literature. Falling under the broader category of
‘Instance-based learning’ (IBL) classifiers (Mitchell 1997), kNN classifiers do not generalise
to classification rules during training but rather store training instances and defer further
action until a test instance appears for classification. Such information can significantly
reduce the number of candidate classes from several thousands (worldwide) down to a few
hundred (e.g. in the U.K.) and even fewer (e.g. 50-100 for a given week anda given

geographic location in the U.K.). In turn, this can help avoid the discriminative
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performance degradation due to exceedingly confusable classes (Gupta et al. 2014), make
the per-class balancing of training data easier by considering underrepresented species
only when necessary and also make trivially easy the incorporation of more training
instances as they become available without the need to retrain or implement incremental
learning methods.

The overall aims of this paper were therefore to examine the utility of using simple,
but flexible, classification methodologies combined with publicly available crowd-sourced
training data to aid automatic species identification of bird song excerpts and to evaluate
the expected level of performance of such practical applications.

The contributions of this paper are summarised as follows:

+ We describe the ‘blueprint’ of a practical automated bird sound identification
system which is directly applicable worldwide.

+ We present classification results that directly indicate the expected level of
performance and usability of such a bird species identification system.

+ We introduce a probabilistic measure of uncertainty associated with the
classification output and discuss how this can be used to increase the reliability of the

identification results.

Methods

Test and Training Audio Recording Data

We used recordings from the ‘Reference Animal Vocalisations’ section ° of the Animal
Sound Archive dataset as test data (hereafter denoted as RAV recordings). The recordings

included in the RAV collection have been manually annotated by the curator
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contained at least 10 open access recordings. This resulted in a collection of 4132
recordings from 99 species with duration ranging from 0.35sec to 36sec and median
duration of 2.26sec (see Table 2 in the Appendix, included in the supplementary material,
for details). In terms of a real-world application, this kind of test data correspond to the
case where the user singles out a recorded excerpt of clean bird sound (e.g. recorded on
their mobile device and ‘chopped’ from the beginning to the end of a bird vocalisation) and
provides it to the recognition system in order to identify the species. Modern mobile devices
with large touch display interfaces make such a process feasible on the field.

We used recordings from the xeno-canto online dataset!? (hereafter denoted as XC
recordings) to train the classifiers we investigated. This database currently contains more
than 270000 recordings from around the world with tens of thousands of new recordings
added every year. For approximately 9300 species there is at least one recording annotated
as dominantly containing the corresponding species (species in the ‘foreground’). The mean
of ‘foreground’ recordings per species is approximately 25 and the median is 10; there are
more than 4600 species represented by at least 10 ‘foreground’ recordings. By selecting
XC recordings given a ‘Quality A’ (highest) ratingand marked as having no other species
in the background we obtained a collection of 6182 recordings of duration ranging between
0.73secand 71min42sec and with median duration of 44.7sec (see supplementary material
for details).

Even though the selection of species used for our experiments was largely dictated by

the availability of publicly accessible, reliably annotated test instances (as was the case
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with the RAV dataset), it offers a quite good indication of bird species prevalence inEurope.
Taking as an indication of prevalence the number of recordings per species currently
available on the xeno-canto database, and with the exception of the Canary Islands
Chiffchaff (Phylloscopus canariensis) which is not a European species, the remaining 98
species used in our experiments contain the 14 most frequent and 18 of the 20 most
frequent species in xeno-canto. Out of the total number of 104100 recordings of the 731
European species in xeno-canto, 50914 recordings, nearly the half, are from the 98
European species of our collection.
Pre-processing and feature extraction

The audio features we used were based on standard FFT-based spectrograms. We
extracted spectral statistics from separate spectrogram frames (frame-level features) and
consequently aggregated these over collections of spectrogram frames to create feature
vectors. For the test (RAV) recordings, frame-level features were computed for the whole
length of the recording while for the training recordings we applied a frame selection
method. This method is a modification of that used in the works of Briggs et al. (2009) and
Stowell & Plumbley (2014a) and is described in the appendix (see supplementary material).
Four types of frame-level features were considered, all choices from the various types
described in Briggs et al. (2009) and Stowell & Plumbley (2014a). These were the (i) mean
(denoted here as fmean); (ii) standard deviation (fstd); (iii) mode (fimode); and (iv) difference
between the mode of two consecutive frames (Afmode). The feature vectors that were used
for classification were consequently determined by computing binned histograms (for the
IBL classifier based on Briggs et al. 2009) and time- summarisation statistics (for the SVM
classifier based on Stowell & Plumbley 2014a). For the former case we consider 100x50-

bin two-dimensional histograms of the pairs (fmeanand fsw) and (fmode and Afmode) frame-
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histograms of the fmode frame-level feature. For the latter case we use the 6-dimensional
time-summarisation features described in Stowell & Plumbley (2014a) comprising the 5t,
50thand 95t percentiles of the fmodeand the 50th, 75thand 95th percentiles of the Afmode frame-
based features (see the appendix for details on the spectrogram computation parameters).

In both cases (histogram binning and time summarisation) the feature vectors used
for training were obtained from sequences of 100 frame-level features (from one or more
XC recordings) selected by the power threshold method mentioned above. With the chosen
spectrogram parameters (listed in the appendix), each such sequence corresponds to
between 1sec and 2sec of clean bird sound. The feature vector for each test instance (RAV
recordings) was computed by histogram binning or time summarisation over the whole
length of the recording.

The total number of frames selected by use of the power threshold method from the
XC recordings for each species is listed in Table 2 in the appendix. We balanced the training
dataset by subsampling according to the class with the fewer selected frames. As can be
seen in Table 2, thisis Emberiza pusilla for which the selection method returned in 1830
training frames. Following the procedure described above, 18 ‘1sec’ traininginstances of
100 frames each were randomly selected (without resubstitution) for each species. We also
investigated a second selection of species, namely the 72 species for which the power
threshold selection method returned at least 20000 frames (again listed in Table 2). In this
case, 200 training instances were used, again comprising 100 frames each. The
corresponding test dataset (RAV recordings) for the collection of 72 species comprised

3354 RAV recordings (see Table 2).
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Classifier and performance evaluation methods

The IBL-type classifier that we investigated is a kNN classifier. It draws from the work
presented in Briggs et al. (2009) where a nearest neighbour classifier with time-
distribution histograms as feature vectors was tested successfully for classification of 6
species. In the present work we modified this method to a kNN voting scheme with a tie-
breaking rule (rather than a single nearest neighbour methodology as was used in Briggs et
al. (2009)). We compared the results of this modified classification scheme against a more
recent work (Stowell & Plumbley 2014a) in which a Support Vector Machine (SVM)
classifier was used in a setup that again adheres to the practical application requirements
outlined in the introduction (i.e. training data obtained from field recordings only
annotated at the recording level, with no manual segmentation to the phrase or syllable
level).

It is important to note that in both the aforementioned works, the training and test
data come from the same dataset, although some care was taken to avoid training and
test data sharing an individual bird origin. In an effort to better investigate real-world
conditions of application, in our study we used completely separated training and test data.

We used the L1 (Manhattan) distance between histogram feature vectors for the kNN
classifier (we also investigated the use of the Kullback-Leibler divergence and an
approximation to the Hellinger distance as described in Briggs et al. (2009) in small-scale
tests and the performance was not influenced considerably). We took the voting score with
an addition of a tie-breaking bias (see details in the supplementary material) as the
posterior probability of class membership in the case of the kNN classifier (Bishop, C. M.

2006 pp. 124-126). For the SVM classifier we used the Matlab interface of the LIBSVM
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software package 1! with its default settings for multiclass probabilistic classification
(Chang & Lin 2011). These settings amount to a radial basis function kernel and a “one-
against-one” method for recasting the problem of training a k-class multiclass classifier to
the training of k(k-1)/2 binary SVM classifiers. We used the estimate provided by LIBSVM
for the posterior class-membership probabilities which is based on the methods described
in (Wu et al. 2004 and Lin et al. 2007).

A concept that can be employed for the improvement of the performance and the
usability elicited from a probabilistic classification scheme, is the separation of the
probabilistic inference and classification decision stages and the introduction of a
classification rejection region (Bishop, C. M. 2006). It is worth noting that despite the fact
that both the kNN and SVM methods considered in the present work provide a probabilistic
output, this is effectively disregarded in the classification stage with the decision made
solely on the ranked list of probabilities and not their actual values. Further to that we note
that, to the best of our knowledge, none of the works presented so far on the subject of
automated bird sound identification have investigated this possibility.

In a binary classifier (and assuming constant gain for correct classification and loss
for misclassification), the expected loss due to a wrong classification decision is related to
how close to unity is the assigned class-membership probability (Bishop, C. M. 2006). For
the application of this notion to a multiclass setup, we use here the entropy (Bishop,

C. M. 2006) of the class-membership probability vectors as the classification rejection
criterion. Being a measure of the information content encoded in the probability

distribution of a discrete random variable, the entropy value can be used as an indicator
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of the certainty associated with the classification decision. In simple terms, low values of
entropy correspond to class-membership probability distributions that tightly peak in one
class or a small number of classes (and are hence associated with higher certainty) whereas
high levels of entropy correspond to distributions that are closer to the uniform
distribution.

We used the Receiver Operating Characteristic (ROC) in a one-class-versus-all setup
for the evaluation of the classification performance. In a binary probabilistic classifier, the
ROC curve traces the points with coordinates equal to the achieved true positive and false
positive rates as the value of the probability threshold discriminating the positive from the
negative class ranges from 0 to 1 (Fawcett, 2006). The constructed Area Under Curve (AUC)
metric ranges from 1 (absolutely correct assignment of instances to classes) to 0
(assignment of all instances to the opposite class) with a value of AUC equal to 0.5
corresponding to a classification result equivalent to chance assignment of test instances to
classes. In the multiclass setup considered here, the AUC was computed taking each class in
turn as the positive with the remaining classes taken as negative. Using a binary
classification example of a highly non-balanced dataset, Davis & Goadrich (2006) show that
the area under the Precision-Recall curve can be a more informative metric than that of the
ROC curve. We include results of that metric again in a one-class-versus-all setup.

The AUC-ROC metric offers a method for the comparative evaluation of different
classifiers’ performance that is robust in the case of non-balanced test datasets and which
is arguably superior to accuracy-based evaluation methods even when a balanced test
dataset is used (Huang and Ling, 2005). However, its intuitive interpretation (namely, the
probability of a randomly chosen negative test instance being ranked by the classifier lower

than a randomly chosen positive test instance) does not lend itself to a direct gauge of the
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practical effectiveness of an identification system such as the one investigated here.
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If we consider the use case where the classifier returns an ordered list (of a chosen length
N) of most likely species, the most easily interpretable measure of its effectiveness would
be how often the correct species is within the returned list as a function of its length; a
measure that we call accuracy@N and which we evaluate in the results section on a
balanced test dataset.

Finally, a measure that is more widely established in the topic of information retrieval,
and which unlike raw accuracy takes into account not only whether the correct class is
within the returned ordered list of length N but also how high it is on that list, is the mean
average precision at N (MAP@N) (Manning et al. 2009). In the case where thereis only one
relevant retrieval option (as our classification setup) this metric becomes equivalent with
the mean reciprocal rank at N (MRR@N) which is used in the results section below. The
MRR@N metric ranges from 0 (in the case where the correct class is not within the N
returned classes for any of the test instances) to 1 (when all test instances return the

correct class ranked as highest).

Results

Figure 1 plots the summary statistics of the classification results (median,
interquartile range and whole range of the vector of AUC numbers for the ROC curve for
each class against the rest, as well as the mean of the per-class AUC-ROC vector weighted
by the number of test instances in each class). Figure 2 plots the same statistics but this time
for the AUC of the Precision-Recall curve. The same results are given in tabular from in
Table 1. Furthermore, while noting that this is not a consistent evaluation metric in a non-
balanced test set (see Huang and Ling, 2005), in Table 1 we list for completeness the

corresponding accuracy scores.
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The weighted mean and the median AUC-ROC for the histogram-based kNN classifier
are practically constant over different choices of audio features and number of voting
neighbours and marginally higher for the 72 species than the 99 species case. The AUC-ROC
results for the SVM classifier with time-summarised audio features are slightly lower in all
cases. The accuracy results show an increase in performance with increasing number of
voting neighbours. Again, in terms of accuracy, the (finode, Afmode) features perform better
compared to (fmode) and (fmode) perform better than (finean, fstd) . The same characteristics are
associated with the AUC of the Precision-Recall results.

Despite the fact that the AUC-ROC results were nearly constant in the kNN
experiments, there was a clear differentiation in the per-species profile of the performance
achieved for different choices of features. For all three features cases (fmean and fstd; fmode ;
fmode and Afmode), the Pearson correlation between the one-class-versus-rest AUC-ROC
vectors obtained with the same features but different numbers of voting neighbours (1, 5,
11, 17 for the 99 species dataset) ranged from a minimum of 0.978 to a maximum of 0.998.
For the 72 species dataset and with number of voting neighbours taking the values 1, 5, 11,
21,51,101, 201, the Pearson correlation between AUC-ROC vectors obtained with the same
features ranged from 0.944 to 0.999 indicating that different species were recognised
consistently better with different types of audio features. Contrary to that, keeping the
number of voting neighbours constant and changing the features used, resulted in a
Pearson correlation between the obtained AUC- ROC vectors that ranged from 0.576 to
0.893 and from 0.586 to 0.863 for the 99 and 72 species datasets respectively.

As can be seen in Table 1, the highest AUC-ROC score is achieved in 10 out of the 12
kNN setups for the Common grasshopper warbler (Locustella naevia). Garden warbler

(Sylvia borin) and Hooded crow (Corvus cornix) scored the highest AUC-ROC in the
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remaining two kNN cases of Table 1 while Canada goose (Branta canadensis) and European
nightjar (Caprimulgus europaeus) scored highest for the two SVM cases. This level of
performance was consistent for these species on a total of 13 parameter setupsfor the
99 species dataset (three feature cases and 1, 5, 11, 17 voting neighbours, plus the SVM
setup) and 22 parameter setups for the 72 species dataset (three feature cases andl1, 5,
11, 21, 51, 101, 201 voting neighbours, plus the SVM setup). A score of more than

0.95 ROC-AUC was obtained 12 and 22 times respectively for the Common grasshopper
warbler. The same performance (more than 0.95 AUC-ROC), was obtained 9 times in the 99
species dataset for the Canada goose (that species was not in the 72 species dataset),4
and 19 times respectively for the Hooded crow, 4 and 14 times respectively for the Garden
warbler and 1 and 8 for the European nightjar. Other than the species appearingin Table
1, the same level of performances was also obtained for the Eurasian wren (Troglodytes
troglodytes) 13 and 18 times respectively and for the Common firecrest(Regulus ignicapilla)
12 times in the 99 species dataset (that species was not in the 72 species dataset). We did
not find any systematic misclassifications between species pairs in our experiments.

In order to get a more direct measure of the performance, we also obtained the
accuracy@N metric on a balanced test dataset. We used the same 99 and 72 species
collections and the same training procedure with xeno-canto data that was described
above. We selected 10 recordings for each species from the Animal Sound Archive dataset
as the test set. Test recordings were chosen by minimizing the number of test instances
labelled as coming from the same individual (the identifiers of the chosen recordings are
provided in the supplementary material). In Figure 3 we plot the percentage of
classification results in which the correct species was within the first N returned

classification outputs, as a function of N. In these results we compared the SVM classifier
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discussed above with one case of the kNN classifier, namely the one where one-
dimensional histograms of the fmode frame-level feature are used and the number of voting
neighbours is set to 17 and 101 for the 99 and 72 species datasets respectively. The other
parameter settings of the kNN classifier returned very similar results. In the case where
only one class was returned by the classifier, the accuracy can be seen in Figure 3 to be
equal to 9% and 6% for the kNN and SVM classifiers for classification among 99 species
and 16% and 10% for classification among 72 species. The corresponding accuracy
scores for a returned list of 10 species by the kNN classifier was approximately 40% (50%
for classification among 72 species) and approximately 30% and 40% respectively for
the SVM classifier. Interpreted with the expected user engagement in mind, this
identification performance is still in need of improvement. When the number of
candidate species is limited to 72 (a number which is at the lower end of the species
expected to be encountered in the field) the correct species is expected to be the top result
of the best performing kNN classification method approximately one in six times. Even
when the identification scheme is allowed to provide the 10 most probable results (a list
length that is already rather cumbersome to display on a mobile device) the correct
species is expected to be within the returned list of the kNN classifier only half of the time.
In Figure 4 we plot the MRR@10 obtained for the same training and test datasets and

the same classifier configurations as in Figure 3 as a function of the proportion of test
instances that are classified using the entropy-based rejection criterion described in the
‘Methods’ section. The application of the rejection criterion is effected by taking a uniform
grid of possible entropy levels ranging from 0 to the maximum level of entropy (equal to
In(99) = 4.59 and In(72) = 4.28 for the 99 and 72 species cases) with points spaced at a

distance of 0.1. For each of these entropy levels, instances associated with higher entropy
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The MRR@10 metric when all instances are classified is equal to 0.18 and 0.12 for the
kNN and SVM classifiers respectively in the 99 species dataset and 0.28 and 0.18 in the 72
species dataset. The performance is consistently rising as the rejection threshold becomes
more stringent (i.e. the maximum allowed level of entropy for trusting a classification is
reduced). It reaches the maximum MRR score of 1 albeit at very high classification rejection
levels (approximately 99%) with the exception of the kNN results of the 72 species dataset
that show a drop in performance at the 98% classificationrejection level. Starting at lower
performance levels when all tests samples are accepted for classification, the SVM classifier
shows better performance at higher classification rejection rates. It thus appears that the
per-class assignment of posterior probabilities by the SVM scheme is more successful than
the nearest neighbour scheme. All the aforementioned characteristics appear consistently
in the other cases of frame-level features and number of voting neighbours settings of Table
1 (not considering the single nearest neighbour setting for which the entropy-based
classification rejection criterionis clearly not applicable). The consistent behaviour
displayed in these results suggeststhat entropy can indeed provide a quite useful
classification reliability measure, but evidently, very high performance is only obtained
when a very large percentage of testsis not classified

An evaluation of the introduced classification reliability measure which is more
directly related to practical application is presented in Figure 5. In that figure we plot again
the MRR@10 metric but this time as a function of the entropy threshold level (i.e. the
maximum value of entropy over which the classification result for a test sample is not
considered reliable and is not included in the evaluation). To account for the fact that the
entropy scaling is different for different numbers of candidate classes, we normalise the

entropy value by dividing it by the maximum possible value of entropy in each of the 99
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and 72 classes cases. Such a normalised value of the reliability measure can be provided
to the user of an application together with the list of most likely species returned by the
probabilistic classifier. As can be seen in Figure 5, with the exception of the SVM results
in the 99-classes experiment, all other cases show a consistent behaviour whereby a
marked increase in reliability occurs for values of normalised entropy below 0.6 with values
below 0.4 being associated with MRR@10 equal or exceeding a value of approximately 0.7.
While there is clearly need for a more detailed investigation, these results suggest that a
calibration of the introduced reliability measure which is consistent over different sets of

candidate species may well be possible a least for the kNN method.

Discussion - Conclusions

The results presented in this paper are focused on classification of bird audio
recordings among a large number of species (as is realistically required) making use of
training data that are presently available for nearly global scalability. The rationale for
undertaking this work was driven by a perceived knowledge gap in the expected level of
performance of such a practical bird audio identification system. For example, among
previous related investigations, the work presented in Lopes et al. (2011) covers audio
recordings from 73 species from the Southern Atlantic Brazilian Coast but presents
classification results for up to only 20 species. The performance of the methods they
investigate is consistently reduced as the number of classes is increased (from 3 up to 20).
Chou & Ko (2011) present classification results among 420 species of Japan birds. However,
in this study little information is available about the characteristics of their training audio

dataset and about the actual degree of train and test data separation in the experiments.
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In addition to the SVM-based classification method presented in Stowell & Plumbley
(2014a) (and which we partly replicated showing similar performance with the kNN
method investigated here) the same authors have investigated (Stowell & Plumbley, 2014b)
the use in bird audio recognition using the unsupervised feature learning method of Coates,
A, & Ng, A. Y. (2012). This approach is applied to various classification experiments of
recordings containing vocalisations from approximately 80 to 500 species with very
positive results. On the other hand, their feature learning method seems to be closely tied
to the particular instance of training data and selection of candidate classes.It is thus
questionable if it can be easily applied to an ad-hoc selection of candidate specieswithout
significant retraining requirements. The authors of that work also find that their method is
possibly demanding in terms of the amount of training data required in orderto achieve
its best performance.

The IBL classification scheme we investigated in this paper mainly draws from the
method proposed in Briggs et al. (2009). The use of higher dimensional histograms with
codebook clustering during the training process was also investigated in that work. The
performance improvement that was quoted with that approach was rather moderate
(increase in accuracy from 88% to 92% for the leading choice of parameters in their
experimental setup while at the same time tying the training process to a particulartraining
dataset and selection of candidate classes). On the other hand, we found that the
introduction of the fmode frame-level feature (position of maximum frequency) instead of the
fmeanand fstd spectral statistics achieved the same performance in our experimental setup by
using only one-dimensional histograms (and hence having reducedrequirements in
storage size and computation time). We also found that, with the use ofa tie-breaking bias

addition, the performance of the histogram-based kNN classifier is practically constant over
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the number of voting neighbours. This seems to be in agreement
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with the finding in Briggs et al. (2009) that taking into account the distance of more distant
neighbours in a Bayes risk minimizing classifier formulation gives practically identical
results with the single nearest neighbour approach.

Rather than offering gains in performance compared to the single nearest neighbour
case, the extension to a kNN method (with a probabilistically interpretable output) allows
the determination of an uncertainty measure of the classification result as an additional
output. It is evident that among classification systems, it is the moderately performing ones
(such as many current-day bird audio recognition systems) that can significantly benefit in
terms of their practical usability from a consistent uncertainty measure of the output. At
the expense of not having a result in many cases, a large numberof very likely wrong
classification results can be discarded and a smaller number of classification results can be
relied upon. In our experimental setup, when all test instances are classified (no rejection
option introduced), the combination of histogram- based features with a kNN classifier
performs better than the SVM method using time- summarised features but this
performance comparison is reversed at high classification rejection rates. We cannot yet
conclusively determine whether this result is due to the different classifiers or the different
types of features and whether it is systematic indifferent sets of species/classes.

As discussed, the flexibility of an instance-based classifier comes at the cost of
increased data storage requirements and computation power in the classification stage.
Taking as an example the xeno-canto training data used for the set of 99 bird species and
the balancing subsampling of the training dataset in the experiments presented here, the
required data storage (making use of efficient storing of the histograms’ sparse arrays)
ranges from less than 1MByte to approximately 35Mbytes for the different types of audio

features used here. The processing time needed for feature computation and kNN



ot ijaiem.com/Dec 2020/ Volume 9/Issue 1/Article No-1/34-73

...... journal of or

in ana ISSN: 2319-4847

classification of the whole set of 4132 test instances (total time duration of 198 minutes) in
the Matlab programming environment running on a PC with Intel Core i3-4160
CPU@3.6GHz, ranged from approximately 250sec to 500sec (for the different histogram
feature and classification parameters considered here). This corresponds to a maximum
of 40ms of computation for each second of recorded sound. Evaluating how these
requirements would translate in a practical deployment for mobile devices is another
important challenge.

The process that we described for the creation of the IBL classifier training instances
from xeno-canto recordings is completely free of manual intervention. When combined
with (i) the fact that such crowd-sourced data sources offer practically global coverage of
bird species recordings and (ii) with the ability to choose the candidate species at run-time
with no need for further classifier training, the IBL methodology that we present in this
paper offers a blueprint for the development of a globally applicable bird sound
identification system on mobile devices which readily provide geo-location information.
Our further work plans include larger-scale experiments using more recently established
standard datasets (such as the BirdCLEF dataset 12) for the determination of the bearing of
different feature sets and classifier parameters on the system'’s performance as well as the
direct comparison with other classification methods. Our plans also include the use of
existing detailed global coverage species distribution information (provided for research
purposes by the ‘Bird species distribution maps of the world’ project 13) for the scaling of

those evaluation experiments to scenarios ofapplication to different geographical regions..

12 http://www.imageclef.org/lifeclef/2017 /bird
13 BirdLife International and NatureServe (2015) Bird species distribution maps of the
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world. BirdLife International, Cambridge, UK and NatureServe, Arlington, USA.
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In conclusion, in this paper we present evaluation results that directly quantify the
expected performance of a practical automated bird sound identification system. We focus
on the use case scenario where a mobile device user provides an excerpt of recorded bird
sound along with geographical and temporal information provided by the device. The latter
is used to select a sufficiently (but not unnecessarily) extensive list of candidate species. In
our work, publicly available, crowd-sourced, training data was used in a fashion free from
manual preprocessing. We couple this with an appropriately flexible classification scheme
to provide a list of most likely species identification results. The current, constantly
increasing, collection of bird audio recordings from the xeno- canto dataset allows the
described identification scheme to have global application. The results we present compare
favourably with previous work adhering to similar application requirements. We evaluate
the application of a method for the improved use of the classifier’s probabilistic output in
refining the classification. There is, however, significant room for improvement in terms of
the accuracy of the results presented to user in order for a system such as the one described
here to be positively appealing and engaging. To that end, our current work is focused in
tuning and optimizing the parameters of the training data selection and audio feature

extraction methods in an effort to further improve the identification performance.
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Tables
Species of Per-species

= ) 4 Per-species AUC ma)l()imum and AUC Accuracy
3 ) = ision-
b= =t S 2 . (ROC) minimum AUC (Prec1§1on (%)
7 = s 2 in one class v. all (ROC) Recall) in one
S = > ':20 class v. all

Min | Max Weig. Median Min Max Weig, Median

Mean Mean
Results for 99 species dataset
fmean 1 | 044 | 098 | 0.77 | 0.80 | lox_cur |loc_nae|0.086 | 0.024 4.53
fstd 17 | 042 | 098 | 0.77 0.79 lox_cur |loc_nae|0.110 | 0.035 6.17
1 0.50 | 1.00 | 0.78 0.81 | emb_aur |loc_nae| 0.084 | 0.031 6.58
17 | 049 | 1.00 | 0.78 | 0.81 chl_chl |loc_nae|0.102 | 0.033 741
fmode 1 0.46 | 1.00 | 0.79 0.81 tur_pil |loc_nae| 0.089 | 0.034 7.74
Afmode | 17 | 0.46 | 1.00 | 0.79 | 0.80 tur_pil |loc_nae|0.112 | 0.037 8.66

f mode

kNN
(histograms)

fmode - 1031|097 | 073 | 0.76 | lox_cur |bra_can|0.091 | 0.024 6.15
Afmode

SVM
(summ. stats)

Results for 72 species dataset
| fmean | 1 1029 ] 096|078 | 081 | lox_cur |sylbor| 0.120] 0.042 | 8.05
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fstd 101 | 0.25 | 0.98 | 0.79 0.81 lox_cur |cor_cor| 0.196| 0.078 9.93
1 | 062 | 099 | 0.80 | 0.82 | jyn_tor |loc_nae| 0.118| 0.045 9.33
Jmode 101061 | 099 | 082 | 084 den_maj |loc_nae| 0.173 | 0.069 | 11.24
fmode 1 0.58 | 097 | 0.79 0.82 tur_pil |loc_nae| 0.130| 0.056 13.06
Afmode | 101 | 0.62 | 0.98 | 0.81 0.84 tur_pil |loc_nae| 0.197 | 0.096 | 15.06

fmode

0.23 | 098 | 0.75 0.77 lox_cur |cap_eur| 0.143| 0.036 6.89
Afmode

SVM
(summ. stats)

Table 1. Summary of per-species AUC performance metric obtained with the ROC and
Precision-Recall curves in a one class v. all setup. Species binomial names in rightmost
columns are abbreviated to 3 first letters for the genus and the species. The top 7 rows
correspond to the 99 species dataset and the lower 7 rows to the 72 species dataset. In
the right-most column we also give the accuracy score (in percent values) for each case.
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Figure 1: Boxplots are median, interquartile range and whole range of the vector of Area
Under the ROC Curve performance for each class against the rest. The black circle is the
mean of the per-class AUC vector weighted by the number of test instances in each class.
The boxplots appearing in triplets correspond (in order from left to right) to the three cases
of frame-level spectral features used in the histogram kNN classifier, namely (i) mean and
standard deviation of the frame spectrum, (ii) position of the maximum frequency and (iii)
position of maximum frequency and frequency modulation across successive frame

couples. For the SVM case we use a 6 dimensional vector of summary statistics.
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Figure 2: Same as in Figure 1 but for the Area Under the Precision-Recall Curve.
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Figure 3: Accuracy in the case where the classifier returns a list of N most probable classes.
The plotted lines are the percentage of classification results for which the correct class is

within the first N classification outputs as a function of N.
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