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ABSTRACT: 
In this study, we simulated a real-world scenario to see how well an automated system could 
identify bird sounds. We rigorously avoided any kind of human interaction during the training of 
our classification algorithms using a crowdsourced dataset consisting of audio recordings of birds. 
Therefore, the method may be used to analyze collections of different species with the use of 
crowdsourced collecting for species labeling. We used a realistic number of candidate classes, 
representative of the kinds of numbers found in the actual world, to test the bird sound 
identification system's performance. Approaches: Within the training dataset's crowdsourced 
recordings, we used a threshold selection approach to distinguish between clear bird sound and 
quiet. The test data was derived from carefully selected recordings and was selected to align with 
an application scenario where the user chooses a segment of pure bird sound and feeds it to the 
identification system without any further information. Because of their popularity and relative 
simplicity, we looked at two classic classification methods: a k-Nearest Neighbor (kNN) classifier 
that uses histogram-based features and a Support Vector Machine (SVM) that uses time-
summarization features. In order to make the class judgments more reliable and easier to 
understand, we looked at using a certainty measure that was based on the classifiers' output 
probabilities.  
• Outcomes: Even though we claim that the k Nearest Neighbor classifier provides somewhat 
more flexibility, our findings show that both identification approaches performed similarly. In 
addition, we demonstrate that using an The reliability of categorization findings may be 
valuablely and consistently gauged by using the outcome certainty measure.  
• Broader implications: Our research into probabilistic classification methodologies and use of 
generic training data directly contribute to the creation of a practical system for identifying bird 
sounds, which could have global applications. This system can adapt to the field's variable number 
of candidate species and classes. We go even beyond by demonstrating how the certainty metrics 
linked to identification results may greatly enhance the system's overall practical utility.  
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Introduction 
 

Over the last decade rapid advances in the sensing capabilities, data storage, network 

connectivity and computation power of mobile devices have occurred. This has been 

recognized as a unique opportunity for the deployment of biological recording systems to 

detect and identify biodiversity using mobile device applications (August et al. 2015). 

The widespread user base of such devices, as well as the ability to geo-tag & time-stamp 

observations and to exchange data makes the intelligent gathering of biodiversity 

information at a massive scale a real possibility. The potential of such methods to underpin 

the design of data-driven species population models, ecosystem sustainability evaluation 

and biodiversity protection strategies has been realised in publicly available, either 

automatic or crowd-sourced, identification applications for 

birds (ChirpOMatic, Warblr, BirdSongID, Merlin Bird Photo ID)1, bats (BatMobile, Echo 

Meter Touch Bat Detector) 2 , cetaceans (Automatic Whale Detector) 3 , insects (Cicada 

Hunt)4 and plants (Plantifier, NatureGate, Leafsnap, Plantsnap, Wild Flower Id)5. 

The use of such approaches to enable automatic bird sound detection and 

identification started receiving research attention some two decades ago (see e.g. Anderson 

et al. 1996). In recent years there have been a number of studies carried out to investigate 

the effectiveness of different audio feature extraction methods and classification algorithms 

for bird sound identification (see for example Somervuo et al. 2006; Brandes 2008a,b; Trifa 

et al. 2008; Acevedo et al. 2009; Kirschel et al. 2009; Lakshminarayanan et al. 2009; Farina 

et al. 2011; Towsey et al. 2013; Wimmer et al. 2013; Stowell & Plumbley 2014b). 

Identification methods have also been used in the context of audio identification of 

vocalisations from species, such as bats (see e.g. Walters et al. 2012; Zamora-Gutierrez et 

al. 2016). More recently, the development of new recognition methods is mainly carried 
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and presented as part of online competitions6 (see Stowell et al. 2016; Xie et al. 2018 and 

references therein). The method of choice in these more recent developments is 

predominantly that of deep convolutional neural networks operating on 2D spectrograms 

treated as images. Our work does not aim to investigate‘best classification’ in the narrow 

machine learning sense. We consider instead the pipeline for creation of detection 

algorithms, focusing on the role of data for both training and testing as well as issues of 

labelling.  

 

First, with the exception of Lopes et al. 2011, Chou & Ko 2011, Stowell & Plumbley 

2014a,b and the most recent online BirdClef competitions, most of the research undertaken 

to date presents automated classification results associated with approximately 5 to 20 

species of birds. This number of candidate classes/species is far below the number of 

vocalizing avian species that are likely to be encountered in the field. For example, data 

from the BirdTrack project7 for the region of Oxford, UK (an area of nine 10-km squares 

around the city of Oxford) collected by the British Trust for Ornithology list a total of 

approximately 240 species in an annual cycle8 with the number of occurring species per 

week ranging from approximately 80 to 140 (with a mean of 110). An automated 

classification system deployed in the field would therefore have to operate on a 

considerably larger set of species than typically investigated in most studies so far and 

probably around 50-100 classes/species in a typical deployment scenario. 

Second, for a species identification method to be scalable to global application, the 

classifier’s training method needs to be applicable to as many of the total number of 

vocalizing avian species -namely some 10000 species that are found worldwide.  
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assembling training data for such a number of classes and, more importantly, relying on 

a few individual experts for segmenting and annotating adequate volumes of training data, 

is thus a major undertaking and not practicable for most regions of the world. This fact 

renders inapplicable a large number of classification methods presented in the literature 

so far, especially those that rely on manual segmentation to the syllable or phrase level (see 

e.g. Anderson et al. 1996; Chen & Maher 2006; Vilches et al. 2006; Lee et al. 2008; Trifa et 

al. 2008; Acevedo et al. 2009; Vallejo & Taylor 2009; Wei & Blumstein 2011; Aide et al. 2013; 

Tsai et al. 2014; Tsai & Xue 2014). On the other hand, a publically available database of bird 

sounds exists, with the sounds both recorded and annotated in a crowd-sourced manner -

albeit not at the syllable or phrase level- and provides nearly worldwide coverage of bird 

species data which is constantly enriched. This database is the xeno-canto project (xeno-

canto.org). The identification methods we consider in this paper rely on data obtained from 

the xeno-canto data source in a manner that is directly and automatically repeatable for any 

selection of bird species from any region of the world. 

Third, we find that classification methodologies that allow the straightforward and 

flexible use of time-of-year and location information for the selection of candidate classes 

(bird species) on-the-spot, for example the k nearest neighbours (kNN), have received 

virtually no attention in the existing literature. Falling under the broader category of 

‘Instance-based learning’ (IBL) classifiers (Mitchell 1997), kNN classifiers do not generalise 

to classification rules during training but rather store training instances and defer further 

action until a test instance appears for classification. Such information can significantly 

reduce the number of candidate classes from several thousands (worldwide) down to a few 

hundred (e.g. in the U.K.) and even fewer (e.g. 50-100 for a given week and a given 

geographic location in the U.K.). In turn, this can help avoid the discriminative 
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performance degradation due to exceedingly confusable classes (Gupta et al. 2014), make 

the per-class balancing of training data easier by considering underrepresented species 

only when necessary and also make trivially easy the incorporation of more training 

instances as they become available without the need to retrain or implement incremental 

learning methods. 

The overall aims of this paper were therefore to examine the utility of using simple, 

but flexible, classification methodologies combined with publicly available crowd- sourced 

training data to aid automatic species identification of bird song excerpts and to evaluate 

the expected level of performance of such practical applications. 

The contributions of this paper are summarised as follows: 

 
• We describe the ‘blueprint’ of a practical automated bird sound identification 

system which is directly applicable worldwide. 

• We present classification results that directly indicate the expected level of 

performance and usability of such a bird species identification system. 

• We introduce a probabilistic measure of uncertainty associated with the 

classification output and discuss how this can be used to increase the reliability of the 

identification results. 

 
 

Methods 
 

Test and Training Audio Recording Data 
 

We used recordings from the ‘Reference Animal Vocalisations’ section 9 of the Animal 

Sound Archive dataset as test data (hereafter denoted as RAV recordings). The recordings 

included in the RAV collection have been manually annotated by the curator 
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contained at least 10 open access recordings. This resulted in a collection of 4132 

recordings from 99 species with duration ranging from 0.35sec to 36sec and median 

duration of 2.26sec (see Table 2 in the Appendix, included in the supplementary material, 

for details). In terms of a real-world application, this kind of test data correspond to the 

case where the user singles out a recorded excerpt of clean bird sound (e.g. recorded on 

their mobile device and ‘chopped’ from the beginning to the end of a bird vocalisation) and 

provides it to the recognition system in order to identify the species. Modern mobile devices 

with large touch display interfaces make such a process feasible on the field. 

We used recordings from the xeno-canto online dataset10 (hereafter denoted as XC 

recordings) to train the classifiers we investigated. This database currently contains more 

than 270000 recordings from around the world with tens of thousands of new recordings 

added every year. For approximately 9300 species there is at least one recording annotated 

as dominantly containing the corresponding species (species in the ‘foreground’). The mean 

of ‘foreground’ recordings per species is approximately 25 and the median is 10; there are 

more than 4600 species represented by at least 10 ‘foreground’ recordings. By selecting 

XC recordings given a ‘Quality A’ (highest) rating and marked as having no other species 

in the background we obtained a collection of 6182 recordings of duration ranging between 

0.73sec and 71min42sec and with median duration of 44.7sec (see supplementary material 

for details). 

Even though the selection of species used for our experiments was largely dictated by 

the availability of publicly accessible, reliably annotated test instances (as was the case 
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with the RAV dataset), it offers a quite good indication of bird species prevalence in Europe. 

Taking as an indication of prevalence the number of recordings per species currently 

available on the xeno-canto database, and with the exception of the Canary Islands 

Chiffchaff (Phylloscopus canariensis) which is not a European species, the remaining 98 

species used in our experiments contain the 14 most frequent and 18 of the 20 most 

frequent species in xeno-canto. Out of the total number of 104100 recordings of the 731 

European species in xeno-canto, 50914 recordings, nearly the half, are from the 98 

European species of our collection. 

Pre-processing and feature extraction 
 

The audio features we used were based on standard FFT-based spectrograms. We 

extracted spectral statistics from separate spectrogram frames (frame-level features) and 

consequently aggregated these over collections of spectrogram frames to create feature 

vectors. For the test (RAV) recordings, frame-level features were computed for the whole 

length of the recording while for the training recordings we applied a frame selection 

method. This method is a modification of that used in the works of Briggs et al. (2009) and 

Stowell & Plumbley (2014a) and is described in the appendix (see supplementary material). 

Four types of frame-level features were considered, all choices from the various types 

described in Briggs et al. (2009) and Stowell & Plumbley (2014a). These were the (i) mean 

(denoted here as fmean); (ii) standard deviation (fstd); (iii) mode (fmode); and (iv) difference 

between the mode of two consecutive frames (Δfmode). The feature vectors that were used 

for classification were consequently determined by computing binned histograms (for the 

IBL classifier based on Briggs et al. 2009) and time- summarisation statistics (for the SVM 

classifier based on Stowell & Plumbley 2014a). For the former case we consider 100x50-

bin two-dimensional histograms of the pairs (fmean and fstd) and (fmode and Δfmode) frame-
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level features and 100-bin one-dimensional 
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histograms of the fmode frame-level feature. For the latter case we use the 6-dimensional 

time-summarisation features described in Stowell & Plumbley (2014a) comprising the 5th, 

50th and 95th percentiles of the fmode and the 50th, 75th and 95th percentiles of the Δfmode frame-

based features (see the appendix for details on the spectrogram computation parameters). 

In both cases (histogram binning and time summarisation) the feature vectors used 

for training were obtained from sequences of 100 frame-level features (from one or more 

XC recordings) selected by the power threshold method mentioned above. With the chosen 

spectrogram parameters (listed in the appendix), each such sequence corresponds to 

between 1sec and 2sec of clean bird sound. The feature vector for each test instance (RAV 

recordings) was computed by histogram binning or time summarisation over the whole 

length of the recording. 

The total number of frames selected by use of the power threshold method from the 

XC recordings for each species is listed in Table 2 in the appendix. We balanced the training 

dataset by subsampling according to the class with the fewer selected frames. As can be 

seen in Table 2, this is Emberiza pusilla for which the selection method returned in 1830 

training frames. Following the procedure described above, 18 ‘1sec’ training instances of 

100 frames each were randomly selected (without resubstitution) for each species. We also 

investigated a second selection of species, namely the 72 species for which the power 

threshold selection method returned at least 20000 frames (again listed in Table 2). In this 

case, 200 training instances were used, again comprising 100 frames each. The 

corresponding test dataset (RAV recordings) for the collection of 72 species comprised 

3354 RAV recordings (see Table 2). 
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Classifier and performance evaluation methods 

The IBL-type classifier that we investigated is a kNN classifier. It draws from the work 

presented in Briggs et al. (2009) where a nearest neighbour classifier with time- 

distribution histograms as feature vectors was tested successfully for classification of 6 

species. In the present work we modified this method to a kNN voting scheme with a tie- 

breaking rule (rather than a single nearest neighbour methodology as was used in Briggs et 

al. (2009)). We compared the results of this modified classification scheme against a more 

recent work (Stowell & Plumbley 2014a) in which a Support Vector Machine (SVM) 

classifier was used in a setup that again adheres to the practical application requirements 

outlined in the introduction (i.e. training data obtained from field recordings only 

annotated at the recording level, with no manual segmentation to the phrase or syllable 

level). 

It is important to note that in both the aforementioned works, the training and test 

data come from the same dataset, although some care was taken to avoid training and 

test data sharing an individual bird origin. In an effort to better investigate real-world 

conditions of application, in our study we used completely separated training and test data. 

We used the L1 (Manhattan) distance between histogram feature vectors for the kNN 

classifier (we also investigated the use of the Kullback–Leibler divergence and an 

approximation to the Hellinger distance as described in Briggs et al. (2009) in small-scale 

tests and the performance was not influenced considerably). We took the voting score with 

an addition of a tie-breaking bias (see details in the supplementary material) as the 

posterior probability of class membership in the case of the kNN classifier (Bishop, C. M. 

2006 pp. 124-126). For the SVM classifier we used the Matlab interface of the LIBSVM 
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software package 11 with its default settings for multiclass probabilistic classification 

(Chang & Lin 2011). These settings amount to a radial basis function kernel and a “one- 

against-one” method for recasting the problem of training a k-class multiclass classifier to 

the training of k(k-1)/2 binary SVM classifiers. We used the estimate provided by LIBSVM 

for the posterior class-membership probabilities which is based on the methods described 

in (Wu et al. 2004 and Lin et al. 2007). 

A concept that can be employed for the improvement of the performance and the 

usability elicited from a probabilistic classification scheme, is the separation of the 

probabilistic inference and classification decision stages and the introduction of a 

classification rejection region (Bishop, C. M. 2006). It is worth noting that despite the fact 

that both the kNN and SVM methods considered in the present work provide a probabilistic 

output, this is effectively disregarded in the classification stage with the decision made 

solely on the ranked list of probabilities and not their actual values. Further to that we note 

that, to the best of our knowledge, none of the works presented so far on the subject of 

automated bird sound identification have investigated this possibility. 

In a binary classifier (and assuming constant gain for correct classification and loss 

for misclassification), the expected loss due to a wrong classification decision is related to 

how close to unity is the assigned class-membership probability (Bishop, C. M. 2006). For 

the application of this notion to a multiclass setup, we use here the entropy (Bishop, 

C. M. 2006) of the class-membership probability vectors as the classification rejection 

criterion. Being a measure of the information content encoded in the probability 

distribution of a discrete random variable, the entropy value can be used as an indicator 
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of the certainty associated with the classification decision. In simple terms, low values of 

entropy correspond to class-membership probability distributions that tightly peak in one 

class or a small number of classes (and are hence associated with higher certainty) whereas 

high levels of entropy correspond to distributions that are closer to the uniform 

distribution. 

We used the Receiver Operating Characteristic (ROC) in a one-class-versus-all setup 

for the evaluation of the classification performance. In a binary probabilistic classifier, the 

ROC curve traces the points with coordinates equal to the achieved true positive and false 

positive rates as the value of the probability threshold discriminating the positive from the 

negative class ranges from 0 to 1 (Fawcett, 2006). The constructed Area Under Curve (AUC) 

metric ranges from 1 (absolutely correct assignment of instances to classes) to 0 

(assignment of all instances to the opposite class) with a value of AUC equal to 0.5 

corresponding to a classification result equivalent to chance assignment of test instances to 

classes. In the multiclass setup considered here, the AUC was computed taking each class in 

turn as the positive with the remaining classes taken as negative. Using a binary 

classification example of a highly non-balanced dataset, Davis & Goadrich (2006) show that 

the area under the Precision-Recall curve can be a more informative metric than that of the 

ROC curve. We include results of that metric again in a one-class-versus-all setup. 

The AUC-ROC metric offers a method for the comparative evaluation of different 

classifiers’ performance that is robust in the case of non-balanced test datasets and which 

is arguably superior to accuracy-based evaluation methods even when a balanced test 

dataset is used (Huang and Ling, 2005). However, its intuitive interpretation (namely, the 

probability of a randomly chosen negative test instance being ranked by the classifier lower 

than a randomly chosen positive test instance) does not lend itself to a direct gauge of the 
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practical effectiveness of an identification system such as the one investigated here. 
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If we consider the use case where the classifier returns an ordered list (of a chosen length 

N) of most likely species, the most easily interpretable measure of its effectiveness would 

be how often the correct species is within the returned list as a function of its length; a 

measure that we call accuracy@N and which we evaluate in the results section on a 

balanced test dataset. 

Finally, a measure that is more widely established in the topic of information retrieval, 

and which unlike raw accuracy takes into account not only whether the correct class is 

within the returned ordered list of length N but also how high it is on that list, is the mean 

average precision at N (MAP@N) (Manning et al. 2009). In the case where there is only one 

relevant retrieval option (as our classification setup) this metric becomes equivalent with 

the mean reciprocal rank at N (MRR@N) which is used in the results section below. The 

MRR@N metric ranges from 0 (in the case where the correct class is not within the N 

returned classes for any of the test instances) to 1 (when all test instances return the 

correct class ranked as highest). 

 

Results 
 

Figure 1 plots the summary statistics of the classification results (median, 

interquartile range and whole range of the vector of AUC numbers for the ROC curve for 

each class against the rest, as well as the mean of the per-class AUC-ROC vector weighted 

by the number of test instances in each class). Figure 2 plots the same statistics but this time 

for the AUC of the Precision-Recall curve. The same results are given in tabular from in 

Table 1. Furthermore, while noting that this is not a consistent evaluation metric in a non-

balanced test set (see Huang and Ling, 2005), in Table 1 we list for completeness the 

corresponding accuracy scores. 
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The weighted mean and the median AUC-ROC for the histogram-based kNN classifier 

are practically constant over different choices of audio features and number of voting 

neighbours and marginally higher for the 72 species than the 99 species case. The AUC-ROC 

results for the SVM classifier with time-summarised audio features are slightly lower in all 

cases. The accuracy results show an increase in performance with increasing number of 

voting neighbours. Again, in terms of accuracy, the (fmode, Δfmode) features perform better 

compared to (fmode) and (fmode) perform better than (fmean, fstd) . The same characteristics are 

associated with the AUC of the Precision-Recall results. 

Despite the fact that the AUC-ROC results were nearly constant in the kNN 

experiments, there was a clear differentiation in the per-species profile of the performance 

achieved for different choices of features. For all three features cases (fmean and fstd ; fmode ; 

fmode and Δfmode), the Pearson correlation between the one-class-versus-rest AUC-ROC 

vectors obtained with the same features but different numbers of voting neighbours (1, 5, 

11, 17 for the 99 species dataset) ranged from a minimum of 0.978 to a maximum of 0.998. 

For the 72 species dataset and with number of voting neighbours taking the values 1, 5, 11, 

21, 51, 101, 201, the Pearson correlation between AUC-ROC vectors obtained with the same 

features ranged from 0.944 to 0.999 indicating that different species were recognised 

consistently better with different types of audio features. Contrary to that, keeping the 

number of voting neighbours constant and changing the features used, resulted in a 

Pearson correlation between the obtained AUC- ROC vectors that ranged from 0.576 to 

0.893 and from 0.586 to 0.863 for the 99 and 72 species datasets respectively. 

As can be seen in Table 1, the highest AUC-ROC score is achieved in 10 out of the 12 

kNN setups for the Common grasshopper warbler (Locustella naevia). Garden warbler 

(Sylvia borin) and Hooded crow (Corvus cornix) scored the highest AUC-ROC in the 
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remaining two kNN cases of Table 1 while Canada goose (Branta canadensis) and European 

nightjar (Caprimulgus europaeus) scored highest for the two SVM cases. This level of 

performance was consistent for these species on a total of 13 parameter setups for the 

99 species dataset (three feature cases and 1, 5, 11, 17 voting neighbours, plus the SVM 

setup) and 22 parameter setups for the 72 species dataset (three feature cases and 1, 5, 

11, 21, 51, 101, 201 voting neighbours, plus the SVM setup). A score of more than 

0.95 ROC-AUC was obtained 12 and 22 times respectively for the Common grasshopper 

warbler. The same performance (more than 0.95 AUC-ROC), was obtained 9 times in the 99 

species dataset for the Canada goose (that species was not in the 72 species dataset), 4 

and 19 times respectively for the Hooded crow, 4 and 14 times respectively for the Garden 

warbler and 1 and 8 for the European nightjar. Other than the species appearing in Table 

1, the same level of performances was also obtained for the Eurasian wren (Troglodytes 

troglodytes) 13 and 18 times respectively and for the Common firecrest (Regulus ignicapilla) 

12 times in the 99 species dataset (that species was not in the 72 species dataset). We did 

not find any systematic misclassifications between species pairs in our experiments. 

In order to get a more direct measure of the performance, we also obtained the 

accuracy@N metric on a balanced test dataset. We used the same 99 and 72 species 

collections and the same training procedure with xeno-canto data that was described 

above. We selected 10 recordings for each species from the Animal Sound Archive dataset 

as the test set. Test recordings were chosen by minimizing the number of test instances 

labelled as coming from the same individual (the identifiers of the chosen recordings are 

provided in the supplementary material). In Figure 3 we plot the percentage of 

classification results in which the correct species was within the first N returned 

classification outputs, as a function of N. In these results we compared the SVM classifier 
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discussed above with one case of the kNN classifier, namely the one where one- 

dimensional histograms of the fmode frame-level feature are used and the number of voting 

neighbours is set to 17 and 101 for the 99 and 72 species datasets respectively. The other 

parameter settings of the kNN classifier returned very similar results. In the case where 

only one class was returned by the classifier, the accuracy can be seen in Figure 3 to be 

equal to 9% and 6% for the kNN and SVM classifiers for classification among 99 species 

and 16% and 10% for classification among 72 species. The corresponding accuracy 

scores for a returned list of 10 species by the kNN classifier was approximately 40% (50% 

for classification among 72 species) and approximately 30% and 40% respectively for 

the SVM classifier. Interpreted with the expected user engagement in mind, this 

identification performance is still in need of improvement. When the number of 

candidate species is limited to 72 (a number which is at the lower end of the species 

expected to be encountered in the field) the correct species is expected to be the top result 

of the best performing kNN classification method approximately one in six times. Even 

when the identification scheme is allowed to provide the 10 most probable results (a list 

length that is  already rather cumbersome to display  on  a mobile device) the  correct 

species is expected to be within the returned list of the kNN classifier only half of the time. 

In Figure 4 we plot the MRR@10 obtained for the same training and test datasets and 

the same classifier configurations as in Figure 3 as a function of the proportion of test 

instances that are classified using the entropy-based rejection criterion described in the 

‘Methods’ section. The application of the rejection criterion is effected by taking a uniform  

grid of possible entropy levels ranging from 0 to the maximum level of entropy (equal to 

ln(99) = 4.59 and ln(72) = 4.28 for the 99 and 72 species cases) with points spaced at a 

distance of 0.1. For each of these entropy levels, instances associated with higher entropy 
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are rejected prior to the determination of the MRR@10 performance. 
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The MRR@10 metric when all instances are classified is equal to 0.18 and 0.12 for the 

kNN and SVM classifiers respectively in the 99 species dataset and 0.28 and 0.18 in the 72 

species dataset. The performance is consistently rising as the rejection threshold becomes 

more stringent (i.e. the maximum allowed level of entropy for trusting a classification is 

reduced). It reaches the maximum MRR score of 1 albeit at very high classification rejection 

levels (approximately 99%) with the exception of the kNN results of the 72 species dataset 

that show a drop in performance at the 98% classification rejection level. Starting at lower 

performance levels when all tests samples are accepted for classification, the SVM classifier 

shows better performance at higher classification rejection rates. It thus appears that the 

per-class assignment of posterior probabilities by the SVM scheme is more successful than 

the nearest neighbour scheme. All the aforementioned characteristics appear consistently 

in the other cases of frame-level features and number of voting neighbours settings of Table 

1 (not considering the single nearest neighbour setting for which the entropy-based 

classification rejection criterion is clearly not applicable). The consistent behaviour 

displayed in these results suggests that entropy can indeed provide a quite useful 

classification reliability measure, but evidently, very high performance is only obtained 

when a very large percentage of tests is not classified 

An evaluation of the introduced classification reliability measure which is more 

directly related to practical application is presented in Figure 5. In that figure we plot again 

the MRR@10 metric but this time as a function of the entropy threshold level (i.e. the 

maximum value of entropy over which the classification result for a test sample is not 

considered reliable and is not included in the evaluation). To account for the fact that the 

entropy scaling is different for different numbers of candidate classes, we normalise the 

entropy value by dividing it by the maximum possible value of entropy in each of the 99 
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and 72 classes cases. Such a normalised value of the reliability measure can be provided 

to the user of an application together with the list of most likely species returned by the 

probabilistic classifier. As can be seen in Figure 5, with the exception of the SVM results 

in the 99-classes experiment, all other cases show a consistent behaviour whereby a 

marked increase in reliability occurs for values of normalised entropy below 0.6 with values 

below 0.4 being associated with MRR@10 equal or exceeding a value of approximately 0.7. 

While there is clearly need for a more detailed investigation, these results suggest that a 

calibration of the introduced reliability measure which is consistent over different sets of 

candidate species may well be possible a least for the kNN method. 

 

Discussion – Conclusions 
 

The results presented in this paper are focused on classification of bird audio 

recordings among a large number of species (as is realistically required) making use of 

training data that are presently available for nearly global scalability. The rationale for 

undertaking this work was driven by a perceived knowledge gap in the expected level of 

performance of such a practical bird audio identification system. For example, among 

previous related investigations, the work presented in Lopes et al. (2011) covers audio 

recordings from 73 species from the Southern Atlantic Brazilian Coast but presents 

classification results for up to only 20 species. The performance of the methods they 

investigate is consistently reduced as the number of classes is increased (from 3 up to 20). 

Chou & Ko (2011) present classification results among 420 species of Japan birds. However, 

in this study little information is available about the characteristics of their training audio 

dataset and about the actual degree of train and test data separation in the experiments. 
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In addition to the SVM-based classification method presented in Stowell & Plumbley 

(2014a) (and which we partly replicated showing similar performance with the kNN 

method investigated here) the same authors have investigated (Stowell & Plumbley, 2014b) 

the use in bird audio recognition using the unsupervised feature learning method of Coates, 

A., & Ng, A. Y. (2012). This approach is applied to various classification experiments of 

recordings containing vocalisations from approximately 80 to 500 species with very 

positive results. On the other hand, their feature learning method seems to be closely tied 

to the particular instance of training data and selection of candidate classes. It is thus 

questionable if it can be easily applied to an ad-hoc selection of candidate species without 

significant retraining requirements. The authors of that work also find that their method is 

possibly demanding in terms of the amount of training data required in order to achieve 

its best performance. 

The IBL classification scheme we investigated in this paper mainly draws from the 

method proposed in Briggs et al. (2009). The use of higher dimensional histograms with 

codebook clustering during the training process was also investigated in that work. The 

performance improvement that was quoted with that approach was rather moderate 

(increase in accuracy from 88% to 92% for the leading choice of parameters in their 

experimental setup while at the same time tying the training process to a particular training 

dataset and selection of candidate classes). On the other hand, we found that the 

introduction of the fmode frame-level feature (position of maximum frequency) instead of the 

fmean and fstd spectral statistics achieved the same performance in our experimental setup by 

using only one-dimensional histograms (and hence having reduced requirements in 

storage size and computation time). We also found that, with the use of a tie-breaking bias 

addition, the performance of the histogram-based kNN classifier is practically constant over 
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the number of voting neighbours. This seems to be in agreement 



 
            

 
 
 
                                                 ijaiem.com/Dec 2020/ Volume 9/Issue 1/Article No-1/34-73 
                                                                                                                                           ISSN: 2319-4847 
 

 

with the finding in Briggs et al. (2009) that taking into account the distance of more distant 

neighbours in a Bayes risk minimizing classifier formulation gives practically identical 

results with the single nearest neighbour approach. 

Rather than offering gains in performance compared to the single nearest neighbour 

case, the extension to a kNN method (with a probabilistically interpretable output) allows 

the determination of an uncertainty measure of the classification result as an additional 

output. It is evident that among classification systems, it is the moderately performing ones 

(such as many current-day bird audio recognition systems) that can significantly benefit in 

terms of their practical usability from a consistent uncertainty measure of the output. At 

the expense of not having a result in many cases, a large number of very likely wrong 

classification results can be discarded and a smaller number of classification results can be 

relied upon. In our experimental setup, when all test instances are classified (no rejection 

option introduced), the combination of histogram- based features with a kNN classifier 

performs better than the SVM method using time- summarised features but this 

performance comparison is reversed at high classification rejection rates. We cannot yet 

conclusively determine whether this result is due to the different classifiers or the different 

types of features and whether it is systematic in different sets of species/classes. 

As discussed, the flexibility of an instance-based classifier comes at the cost of 

increased data storage requirements and computation power in the classification stage. 

Taking as an example the xeno-canto training data used for the set of 99 bird species and 

the balancing subsampling of the training dataset in the experiments presented here, the 

required data storage (making use of efficient storing of the histograms’ sparse arrays) 

ranges from less than 1MByte to approximately 35Mbytes for the different types of audio 

features used here. The processing time needed for feature computation and kNN 
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classification of the whole set of 4132 test instances (total time duration of 198 minutes) in 

the Matlab programming environment running on a PC with Intel Core i3-4160 

CPU@3.6GHz, ranged from approximately 250sec to 500sec (for the different histogram 

feature and classification parameters considered here). This corresponds to a maximum 

of 40ms of computation for each second of recorded sound. Evaluating how these 

requirements would translate in a practical deployment for mobile devices is another 

important challenge. 

The process that we described for the creation of the IBL classifier training instances 

from xeno-canto recordings is completely free of manual intervention. When combined 

with (i) the fact that such crowd-sourced data sources offer practically global coverage of 

bird species recordings and (ii) with the ability to choose the candidate species at run-time 

with no need for further classifier training, the IBL methodology that we present in this 

paper offers a blueprint for the development of a globally applicable bird sound 

identification system on mobile devices which readily provide geo-location information. 

Our further work plans include larger-scale experiments using more recently established 

standard datasets (such as the BirdCLEF dataset 12 ) for the determination of the bearing of 

different feature sets and classifier parameters on the system’s performance as well as the 

direct comparison with other classification methods. Our plans also include the use of 

existing detailed global coverage species distribution information (provided for research 

purposes by the ‘Bird species distribution maps of the world’ project 13 ) for the scaling of 

those evaluation experiments to scenarios of application to different geographical regions.. 

 

 
12 http://www.imageclef.org/lifeclef/2017/bird 
13 BirdLife International and NatureServe (2015) Bird species distribution maps of the 

mailto:CPU@3.6GHz
http://www.imageclef.org/lifeclef/2017/bird
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world. BirdLife International, Cambridge, UK and NatureServe, Arlington, USA. 
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In conclusion, in this paper we present evaluation results that directly quantify the 

expected performance of a practical automated bird sound identification system. We focus 

on the use case scenario where a mobile device user provides an excerpt of recorded bird 

sound along with geographical and temporal information provided by the device. The latter 

is used to select a sufficiently (but not unnecessarily) extensive list of candidate species. In 

our work, publicly available, crowd-sourced, training data was used in a fashion free from 

manual preprocessing. We couple this with an appropriately flexible classification scheme 

to provide a list of most likely species identification results. The current, constantly 

increasing, collection of bird audio recordings from the xeno- canto dataset allows the 

described identification scheme to have global application. The results we present compare 

favourably with previous work adhering to similar application requirements. We evaluate 

the application of a method for the improved use of the classifier’s probabilistic output in 

refining the classification. There is, however, significant room for improvement in terms of 

the accuracy of the results presented to user in order for a system such as the one described 

here to be positively appealing and engaging. To that end, our current work is focused in 

tuning and optimizing the parameters of the training data selection and audio feature 

extraction methods in an effort to further improve the identification performance. 
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Results for 99 species dataset 

k
N

N
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to
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am
s)

 fmean 

fstd 

1 0.44 0.98 0.77 0.80 lox_cur loc_nae 0.086 0.024 4.53 

17 0.42 0.98 0.77 0.79 lox_cur loc_nae 0.110 0.035 6.17 

fmode 
1 0.50 1.00 0.78 0.81 emb_aur loc_nae 0.084 0.031 6.58 

17 0.49 1.00 0.78 0.81 chl_chl loc_nae 0.102 0.033 7.41 

fmode 

Δfmode 

1 0.46 1.00 0.79 0.81 tur_pil loc_nae 0.089 0.034 7.74 

17 0.46 1.00 0.79 0.80 tur_pil loc_nae 0.112 0.037 8.66 
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6.15 

Results for 72 species dataset 

k

N N
 

( h i s t o g r a m s ) 

fmean 1 0.29 0.96 0.78 0.81 lox_cur syl_bor 0.120 0.042 8.05 
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fstd 101 0.25 0.98 0.79 0.81 lox_cur cor_cor 0.196 0.078 9.93 

fmode 
1 0.62 0.99 0.80 0.82 jyn_tor loc_nae 0.118 0.045 9.33 

101 0.61 0.99 0.82 0.84 den_maj loc_nae 0.173 0.069 11.24 

fmode 

Δfmode 

1 0.58 0.97 0.79 0.82 tur_pil loc_nae 0.130 0.056 13.06 

101 0.62 0.98 0.81 0.84 tur_pil loc_nae 0.197 0.096 15.06 
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6.89 

Table 1. Summary of per-species AUC performance metric obtained with the ROC and 
Precision-Recall curves in a one class v. all setup. Species binomial names in rightmost 
columns are abbreviated to 3 first letters for the genus and the species. The top 7 rows 
correspond to the 99 species dataset and the lower 7 rows to the 72 species dataset. In 
the right-most column we also give the accuracy score (in percent values) for each case. 
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Figures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Boxplots are median, interquartile range and whole range of the vector of Area 

Under the ROC Curve performance for each class against the rest. The black circle is the 

mean of the per-class AUC vector weighted by the number of test instances in each class. 

The boxplots appearing in triplets correspond (in order from left to right) to the three cases 

of frame-level spectral features used in the histogram kNN classifier, namely (i) mean and 

standard deviation of the frame spectrum, (ii) position of the maximum frequency and (iii) 

position of maximum frequency and frequency modulation across successive frame 

couples. For the SVM case we use a 6 dimensional vector of summary statistics. 
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Figure 2: Same as in Figure 1 but for the Area Under the Precision-Recall Curve. 
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Figure 3: Accuracy in the case where the classifier returns a list of N most probable classes. 

The plotted lines are the percentage of classification results for which the correct class is 

within the first N classification outputs as a function of N. 
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