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Abstract

Machine learning (ML) has brought a great revolution in the industries enabling the data-based decisions and
predictive analysis, yet the deployment and maintenance of ML systems with high reliability and low downtime
still pose a very complex challenge. Although MLOps enhances model deployment, monitoring, and governance,
it does not have resilience and fault tolerance as a core part of its process. This is the concept-based design of a
fault-tolerant ML pipeline that incorporates Site Reliability Engineering (SRE) principles from MLOps along with
Chaos Testing to address issues like model drift, differences in data, or adversarial attacks. The proposed design
would accept automated deployments, proactive monitoring, and failure simulations to ensure minimal downtime
and the best performance under sudden conditions by improving resilience to Al systems. Chaos Testing tests the
pipeline by simulating the failures, while SRE takes care of proactive monitoring, fault prediction, and automated
recovery. Furthermore, it predicts machine failures in predictive maintenance applications through a CNN-LSTM
hybrid model. The hybrid model outperformed other simple models based on RF and SVM by an accuracy of
97.2, precision of 96.8, and an F1 score of 96.1. Additionally, it cuts Failure Recovery time (FRT) by 45% and
increases Service Availability to 99.1%, while Scalability Efficiency is improved by 30%. This brings about a
resilient and scalable ML infrastructure capable of continuous optimization and self-healing relevant to mission-
critical applications in autonomous driving and predictive maintenance among other industrial sectors.
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1. Introduction

Machine learning has brought a significant transformation in various industries, enabling them to automate
processes, make data-driven decisions, and conduct predictive analysis with unprecedented accuracy [1]. Its
applications span from healthcare diagnostics to financial fraud detection, where ML models provide real-time,
accurate insights critical to operational success [2]. In healthcare, for example, ML algorithms can analyze medical
images to assist doctors in early disease detection, while in finance, they help identify suspicious activities to
prevent fraud [3]. These capabilities have revolutionized industries by improving efficiency, reducing human
error, and providing scalable solutions to complex problems [4].

Despite these advances, deploying and maintaining machine learning models at scale remains a complex challenge
[5]- Unlike traditional software systems, ML models must adapt continuously to evolving data patterns, ensuring
they remain accurate over time without frequent manual intervention [6]. This need for constant adaptation
introduces new complexities, including managing data drift, ensuring model retraining happens smoothly, and
maintaining system availability with minimal downtime [7]. Achieving these goals requires robust infrastructure
and sophisticated workflows that extend beyond traditional software deployment practices.

To address these challenges, MLOps has emerged as a critical discipline, extending the principles of DevOps
specifically for machine learning workflows [8]. MLOps focuses on automating the entire ML lifecycle, including
model development, deployment, monitoring, and governance, thus improving operational efficiency and
reducing time to market for Al solutions [9]. By integrating CI/CD pipelines, automated testing, and scalable
deployment environments, MLOps frameworks enable teams to maintain models reliably in production [10].
However, while MLOps improves deployment speed and consistency, it does not inherently guarantee system
resilience or fault tolerance, which are crucial for building robust Al infrastructures [11].

Building on MLOps, additional strategies are required to ensure machine learning systems can detect, prevent,
and recover from failures autonomously [12]. Fault tolerance mechanisms are vital to maintaining service
availability and prediction reliability, especially when models operate in unpredictable environments [13].
Failures in ML systems may arise from infrastructure outages, unexpected input data changes (model drift),
discrepancies in data quality, or even adversarial attacks designed to deceive models [14]. These challenges
highlight the need for resilience engineering practices that proactively identify potential failure points and
implement self-healing capabilities [15].

Most current ML pipelines are designed with idealized assumptions, often neglecting real-world variability, which
can lead to significant downtimes and degraded performance when unexpected failures occur [16]. Traditional
fault tolerance approaches tend to be reactive, addressing problems only after they manifest, which is insufficient
for mission-critical applications [17]. Reactive responses may cause delays in failure detection and recovery,
ultimately leading to unreliable predictions and reduced trust in Al systems [18].

Applications such as autonomous driving, healthcare monitoring, and financial trading require robust fault
tolerance due to the potentially severe consequences of failure [19]. In these contexts, any disruption can have
costly outcomes, ranging from financial losses to endangering human lives [20]. Therefore, proactive failure
detection and continuous system healing are essential for Al systems to operate safely and reliably at scale [21].
Without these capabilities, organizations risk suffering reputational damage, economic losses, and compromised
decision-making caused by unreliable model outputs [22]. Furthermore, as workloads increase and ML systems
grow more complex, ensuring resilience becomes even more critical [23]. Advanced monitoring tools, anomaly
detection techniques, and automated rollback or retraining mechanisms must be integrated to support
uninterrupted service [24].

For overcoming these challenges, it was proposed to build a fault-tolerant ML pipeline by integrating MLOps
with Site Reliability Engineering (SRE) into chaos-testing. The basic design of this approach would be the
enhancement of the resilience of an Al system by automated deployment, proactive monitoring, and failure
simulation techniques. This framework, using the best practices of SRE, will ensure continuous optimization of
performance while Chaos Testing simulates failures in the ML pipelines to test the functionality of their recovery.
With this configuration, Al infrastructure would be self-healing, failure-adaptive, and robust against failure to
enhance the overall reliability, efficiency, and trust of ML-driven applications.

Research Contribution

e Suggesting a fault-tolerant ML pipeline with the combination of MLOps, Site Reliability Engineering
(SRE), and Chaos Testing. It increases system resilience and decreases downtime.
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e Embedding continuous optimization and self-healing techniques. These help the predictive maintenance
system learn from changes and recover from faults independently.
e Improving scalability with the use of Docker and Kubernetes for containerization. This makes
deployment and resource management effective across cloud environments.
2. Literature Survey

[25] AI and blockchain applications in recruitment are serving to make the function alive and secure enough to
be targeted on MLOps; machine learning pipelines can also tap such functionalities. [26] While blockchain
provides assurances regarding the reality of information, it also helps cut down on false applications by
maintaining the integrity of data. In a similar way, [27] Al automates tasks such as resume screening during
recruitment, just as it optimizes the management of the ML pipeline. However, the above are not without
disadvantages-these would include data privacy-related, barrier adoption-related, and heavy requirement in
investment for infrastructure. [28] Machine learning models like Random Forest Classifier have been used in
cloud-based CRM systems for predicting churn and retaining customers. [29] This process echoes the environment
of MLOps, where data preparation, feature selection, and model training are important for optimum results: that
of finding balance between complexities of the model and simplicity of its interpretation; likewise, MLOps can
create resilient pipelines that scale with the business and continuum of monitoring and improvement to prediction
in real time. In the [30] Integration with Al and ML in CRM systems adopts MLOps tenets for Resilient ML
Pipelines whereby model evaluation is the major area of concern including such algorithms as Random Forest and
Decision Tree models. Data preparation, feature engineering, and model training are automated, reflecting MLOps
processes that ensure the effective management of ML pipelines. Continuous performance tracking ensures that
models are accurate and adaptable, emphasizing the crucial role of MLOps in maintaining resilience and
scalability in Al-driven CRM solutions. In their [28] work, the resilience of ML pipelines in MLOps to employee
engagement strategies that enhance retention. Similar to how customized strategies impact retention, MLOps
improves pipeline resilience by optimizing data preprocessing, model training, and monitoring. In the research,
compensation is the moderator. Continuous evaluation and tuning are keeping the model sustainable over MLOps.
Both can be applied to a long-term view of retention; whether regarding staff or machines, they refer to the
importance of adaptability and the need for ongoing tuning.[29] Federated learning is one such use case for
cybersecurity that in fact goes well with MLOps, since it enhances real-time threat detection in distributed ML
systems. [30] Similar to how GNNs are used for anomaly detection in cybersecurity, MLOps ensures that the
model stays true to the purpose with ongoing monitoring and adjustment. Further, Hashgraph technology has
facilitated secure data exchange, thus enhancing MLOps for data integrity and efficient management across
decentralized scenarios like cloud, edge, and IoT.

According to [31] the IoT-based healthcare framework in MLOps automates data preprocessing, ensuring
consistency with methods like k-Nearest Neighbors for handling missing values and Z-score normalization. In a
similar manner to MLOps, the framework prioritizes data security and scalability, strengthening ML models to
perform efficiently and flexibly in cloud settings. [32] Indicates that synchronously Blockchain, AI/ML, and MPC
for HRM systems bear very strong resemblance to an MLOps approach for securing data and optimizing
workflows of machine learning. In the ML pipelines, MLOps would maintain data integrity while Blockchain
would maintain a decentralized yet secure data store. [33] AI/ML supports the decision-making process being
MPC emphasizes privacy, thereby adding to providing a better performance model in a dynamic environment.
[34] delve into techniques like DAG protocols, FBA, and CMA-ES which are essential to MLOps in making the
ML pipeline resilient. [35] These techniques are tuned so much on performance optimization as well as latency
reduction and fault tolerance, just as similar techniques are used to upgrade the scalability and security of fog
computing. In this study, [36] a hybrid model designed at detecting side-channel attacks combines LSTM, CNNs,
transformers, and spectral analysis in a fused approach to analyzing temporal, spatial, and frequency domain
information for improved detection. [37] The model is likely to provide high accuracy, precision, and recall.
However, such high complexity could relate to more computational requirements, thereby slowing down real-
time applications due to higher latencies. Furthermore, this model may perform differently on a different
embedded system or on an attack scenario outside the training data [38]. In fact, coinciding with MLOps
principles, the combination of decision tree algorithms with edge processing and process agility addresses the
very challenges that MLOps, in itself, seeks to address in terms of operationalizing ML models - scalability, as
well as improved decision making through near real-time actionable insights real-time insights [39]. As MLOps
emphasizes continuous design, testing, and adaptation of models, the process sets up a holistic and rapid approach
to data treatment and insights at scale [40]. Decision tree usage and agile analytics complement the nature of
building iterative and adaptive models that fall under MLOps-specific actions, further ensuring resilient and
effective ML pipelines in continually demanding environments [41]. This has made the use of Transformer-based
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anomaly detection models and self-supervised learning the MLOps scales and optimizes model performance,
adaptability, and scalabilty in TransSecure for resilience in ML pipelines [42].

3. Problem Statement

To foster resilience in ML pipelines, greater attention must be paid to challenges of data security, optimization,
and the integration of state-of-the-art technologies. Such challenges are vital for the attainment of effective
performance and scalability in the real-world application.

e Proving data integrity and protecting it in distributed systems such as cloud and IoT is still one of the
biggest challenges in resilient ML pipelines [43].
e Simplification and scaling ML models typically is challenging because of the excessive computational
overhead of real-time applications and ongoing monitoring [44].
e Incorporating technologies such as Blockchain, AI/ML, and MPC is challenged by privacy issues,
resource requirements, and the requirement for continuous model adaptation [45].
For overcoming these challenges, it was proposed to build a fault-tolerant ML pipeline by integrating MLOps
with Site Reliability Engineering (SRE) into chaos-testing was introduced.
4. Methodology for Resilient ML Pipelines Using MLOps, SRE, and Chaos Testing

The proposed methodology aims to integrate MLOps, Site Reliability Engineering (SRE), and Chaos Testing into
a fault-tolerant and resilient ML pipeline. The effort will ensure that Al systems have a better readiness with
respect to failures, can recover automatically, and may perform optimally with minimum downtime.

Data preprocessing
Handling Outlier
Missing Vaiues cti

Model Model

Data " > (i ining & m:l-om

Data Splitting Feature Scaling| Evaluation gration
- /\
Engineering ci/cp Containerization
Deployment (Docker,Kubernetes) |
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Figure 1: Workflow for Fault-Tolerant Predictive Maintenance Using MLOps, CNN-LSTM, and Chaos
Testing

In the Figure 1, there are processes concerning the construction of fault-tolerant predictive maintenance systems
from data acquisition and pre-processing to building models through PO, CNN-LSTM, optimizing the
deployment, monitoring, and scaling using MLOps-graining. Chaos testing and self-healing mechanism ensure
resilience and the continual performance of the system.

4.1 Data Collection

The Predictive Maintenance Dataset [41] comprises data collected from industrial machines to determine failure
information just before the occurrence. Such parameters include machine ID, ambient temperature, process
temperature, RPM (rotational speed), torque (Nm), tool wear (minutes), and type of failure (Overstrain, Fatigue,
etc.). Data collection takes place through IoT-enabled sensors, historical maintenance records, and real-time
loggers, ensuring proper machine performance tracking. The raw data will be subjected to cleaning, normalization,
and outlier detection procedures before being dumped into cloud-based databases or local storage systems for
further analysis. These structured sensor logs allow full-scale application of Artificial Intelligence to predictive
maintenance in industries, maximizing operational availability and performance while preventing unexpected
failures through automated failure detection and forecasting models.

4.2 Data Preprocessing
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4.2.1 Handling Missing Values: Sensor log missing value information could arise either because of network
failures or sensor malfunctions. These missing values could be filled using mean imputation or interpolation
methods are as follows in Eqn. (1):

n oy
i=1 Xi

Xnew === — Q)

n
4.2.2 Outlier Detection and Removal: Outliers can significantly affect model accuracy. Outlier detection is

performed using Z-score normalization is given in Eqn. (2):
7 =X* )

o
4.2.3 Feature Scaling (Normalization): Sensor readings such as torque, speed, and temperature are different in

magnitude. Min-Max scaling serves to standardize all features as shown in Eqn. (3):
X—Xmin

PR 3)

4.2.4 Feature Engineering: To improve predictive capacity, other variables are added: moving averages, failure

rate trends, and cumulative wear. A moving-average value of the sensor data is calculated as Eqn. (4):

1
Xrolling = N fzt—N Xl' (4)

4.2.5 Data Splitting for Model Training: The dataset is split into training, validation, and test sets for machine
learning model development:

e  Training set: 70% of the data

e Validation set: 15%

e Testset: 15%
This ensures that models are trained effectively while preventing overfitting.

Kcaled =
scale Xmax—Xmin

4.3 Model Development and Training

Accurately develop a predictive maintenance model using a suitable architecture, training them with optimized
parameters, and evaluating performance. The CNN-LSTM hybrid model is adopted, where CNN extracts spatial
features of sensor data while LSTM models the development of temporal dependencies leading to failure
prediction. The dataset is divided into 70% training, 15% validation, and 15% testing to acquire robust learning.
Model training is done through backpropagation and gradient descent, minimizing the loss function is given in
Eqn. (5).

0=0-n-, )
a6
The softmax function is used in the output layer to classify machine health status is defined in Eqn. (6):
y = softmax(Wh + b) (6)

Performance optimization is generally carried out by means of hyperparameter tuning via Grid or Bayesian
Optimization around learning rate, batch size, number of CNN filters, and LSTM units. Evaluation for the model

is done through accuracy, precision, recall, and F1-score are calculated using Eqn. (7).
Precision X Recall

Fl=2X—"-—"7— (7
Precision + Recall
4.4 MLOps-Based Model Deployment

The deployment of the predictive maintenance model must, above all, be done resource-efficiently; thus, these
aspects need to be addressed to satisfy the scalability and reliability requirements: CI/CD, containerization, and
real-time monitoring. CI/CD facilitates automatic versioning, testing, and deployment of the model, minimizing
human errors while improving reproducibility. The model is containerized, being deployed by Docker and
Kubernetes to scale across different cloud environments.

4.4.1 CI/CD for Automated Deployment: CI/CD operates as an automatism over the deployment mechanism
whereby seamless updates and rollback mechanisms are guaranteed. The CI checks the model; the CD deploys it

to production. The deployment function can be given as Eqn. (8):
1

D(t) = ——wxwm ®)
4.4.2 Containerization for Scalability: The model is bundled together with dependencies in docker containers
that allow it to be deployed uniformly across environments. Kubernetes-it automates all those containers with the
self-scaling and load-leveling functions. The containeized model can be defined as Eqn. (9):

Se=2i=1 Ci " R; )
4.4.3 Model Monitoring for Performance Tracking: Continue monitoring the model once deployed, with
regards to performance drift and data mismatch. A reference for drift could be statistical divergence metrics like
Kullback-Leibler (KL) Divergence is given in Eqn. (10):
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Dy (PIIQ) = Xi P(Dlog 73 (10)

4.4.4 Ensuring Model Resilience with Chaos Engineering: Chaos Engineering brings in predetermined
breakdowns to test the robustness of the entire model against real-time conditions to enhance the resilience of
deployments. The SLOs set for the system drive stability in the system while the self-healing mechanisms recover

the system from the failure is given in Eqn. (11):
Ua

R. =
s Ur

(11)

4.5 SRE-Driven Reliability Engineering
The principle goals of SRE are to increase the fault tolerance and resiliency of predictive maintenance models,
integrating reliability metrics, failures predictions, and recovery automation.
4.5.1 Performance Evaluation through Simulated Monitoring: The data stored along with generic data is
analyzed offline, whereby the retrieval time is calculated as a measure of performance are given in Eqn. (12)
Ty

Ry =+ (12)

4.5.2 Defining SLIs and SLOs for Reliability Metrics: SLIs and SLOs establish the reliability criteria of a

system. Availability can be computed from historical uptime data is given in Eqn. (12)
A, = (%) x 100R (13)
t

4.5.3 Offline Evaluation of Recovery Mechanisms: Perform the evaluations of self-healing capabilities through
simulated fault injections. In this case, it simulates various faults (for instance, model drift, data inconsistency)
into a predictive pipeline. Mean Time to Recovery (MTTR) could be derived from offline tests are defined in Eqn.
(14):

MTTR = 2T
N

(14)

4.6 Chaos Testing for Failure Simulation:

Traditionally, chaos testing has been the approach followed for the implementation of deliberate failures in
predictive maintenance systems. This play assumes the amplification to include other simulations, such as those
concerning server failures, network downtimes, and application programming interface (API) malfunctions. This
makes it possible to identify gaps in the ML pipeline before real production. Frameworks like the Chaos Monkey
and Gremlin help to facilitate the controlled implementation of such failures, allowing the defecation from a
systematic evaluation of the robustness of the system.

4.6.1 Measuring System Resilience: The impact of failures is assessed using key metrics such as Failure
Recovery Time (FRT), Response Time (RT), and Resilience Score (R_s). FRT measures how quickly the system
recovers after failure, given by Eqn. (15):

FRT =Tyrec — Tfail (15)
where T is the recovery timestamp and Ty, is the failure occurrence timestamp. The Response Time (RT),
which indicates how long the system takes to respond during failures, is calculated as Eqn. (16):

RT =2 (16)
where T, is the total response duration, and N is the number of requests. The Resilience Score ( R,s) quantifies
the system's ability to withstand failures are defined in Eqn. (17):

Ry =1—2Jed (17)

Ttotal

where D is the total downtime due to failures, and T, is the total test duration. A higher R indicates a more
resilient system.

4.6.2 Identifying Vulnerabilities and Enhancing Robustness: The chaos testing discovers the failure points,
latencies, and vulnerability within the ML pipeline. It advances the reliability of the system in terms of fault-
tolerant microservices, the dynamic allocation of resources, and the mechanisms used for automated recovery.
Indeed, with this enhancement, continuous functions, adaptive management of workloads, and seamless handling
of failures will be the end products towards making predictive maintenance models stronger and even more
efficient.

4.7 Continuous Optimization and Self-Healing Mechanisms
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The optimizing of predictive maintenance systems requires a self-healing mechanism for failure recovery,
workload adaptation, and the guarantee of model accuracy. Auxiliary key techniques could be automated rollback
methods, auto-scaling, and continuous ML retraining for long-term performance and safety.

4.7.1 Automated Rollback Mechanisms for Failed Deployments: To prevent prolonged downtime due to faulty
updates, automated rollback mechanisms revert the system to a stable state if performance metrics drop. This is
done by monitoring the Service Level Indicators (SLIs) such as latency (L), error rate (E), and availability (A). If
SLIs deviate beyond the Service Level Objective (SLO), an automatic rollback is triggered are defined in eqn.

(18):

R = {1, if (L>Ly,)V(E>E)V(A<Ay) (18)
¢ 0, otherwise

4.7.2 Auto-Scaling and Load Balancing: To handle fluctuating workloads, auto-scaling dynamically allocates
resources based on demand. The number of active instances N is adjusted using Eqn. (19):

N = [Ze] (19)
4.7.3 Continuous Model Retraining: ML models must be updated with fresh data to maintain accuracy and
adaptability. The system continuously monitors model drift (D) by comparing real-time predictions with actual
outcomes are shown in eqn. (20):

D = PrewPanl 109 (20)
Pold
5. Results and Discussion
The craft of defect detection achieves optimal performance, yielding an accuracy of 97.2%, precision of 96.8%,
and an F1-score of 96.1%. Moreover, failure recovery time is reduced by up to 45%, service availability increases
to 99.1%, and scalability efficiency improves by 30%. Consequently, the system's resilience is significantly
optimized. The mean absolute error (MAE) of 0.024 indicates minimal prediction deviation, demonstrating a
highly robust and efficient system. The results are presented in Table 1.
Table 1: Performance Metrics table

Metric Value

Accuracy 97.2%

Precision 96.8%

Recall (Sensitivity) 95.4%

F1-Score 96.1%

Mean Absolute Error (MAE) 0.024
Failure Recovery Time (FRT) 45% reduction

Service Availability (SA) 99.1%

Scalability Efficiency 30% improvement

The proposed CNN-LSTM model gives a complete surpassion over the RF and SVM with standalone LSTM by
presenting the highest accuracy of around 97.2% and an F1-score of 96.1% having a lower MAE of 0.024, which
indicates better predictive performance in the aspect of other models. Moreover, the designed architecture has
been successful in reducing Failure Recovery Time to 45% and improving its efficiency in scalability by adding
30%, thus making the system enhanced in itself and fault detection. Lastly, it achieved the highest service
availability at 99.1%, which indicates its robustness and reliability while working with predictive maintenance
applications are showed in Table 2.
Table 2: Performance Evaluation of Predictive Maintenance Models

Model Accuracy | Precision | Recall | F1- | MAE | Failure Service Scalability
(%) (%) (%) | Score Recovery | Availability Efficiency
(%) Time (%) Improvement
(FRT)
Reduction
RF 92.5 91.8 90.2 | 91.0 | 0.053 20% 97.5 15%
SVM 90.2 89.5 87.8 | 88.6 | 0.065 18% 96.9 10%
LSTM 94.7 93.9 92.5 | 93.2 | 0.041 30% 98.3 22%
Proposed 97.2 96.8 954 | 96.1 | 0.024 45% 99.1 30%
CNNLSTM
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Figure 2: Performance Comparison of MAE, FRT Reduction, Service Availability, and Scalability
Efficiency

The Figure 2 compares the different models, depicting the values based on the additional four metrics. The
CNNLSTM model performs the best among the others regarding FRT Reduction and Improvement of Scalability
Efficiency. All models are similar in terms of Service Availability, but CNNLSTM has the lower MAE.

Comparison of Model Performance Metrics

—— Accuracy
—e— Precision
—e— Recall
96 | —e— Fl-Score

94

92

Percentage (%)

90

a8

RF SVM LSTM Proposed CNNLSTM
Madel

Figure 3: Performance Comparison of Models: Accuracy, Precision, Recall, and F1-Score

The Figure 3 provides insight into the increasing performance from RF and SVM to the Proposed CNNLSTM
model across all metrics. Proposed CNNLSTM also consistently outdoes its counterparts across all four metrics,
making accuracy its crowning glory. It hence establishes a superiority of the CNNLSTM over traditional models
such as RF and SVM.

5.1 Discussion

The CNN-LSTM hybrid model performed impressively through the comprehensive integration of spatial and
temporal feature extraction to yield 97.2% accuracy and an F1 score of 96.1%. RF suffered a lack of great
performance with respect to recall (an accuracy of 92.5%), while SVM also appeared limited in handling data that
possess a sequential characteristic (accuracy of 90.2% and 0.065 MAE). LSTM individually raised accuracy to
94.7%, yet it was inferior to CNN-LSTM. In reducing FRT by 45%, the hybrid model secured 99.1% service
availability for reliable industrial monitoring. MLOps integration, automated monitoring, and cloud deployment
using Docker and Kubernetes improved scalability by 30%.

6. Conclusion

This paper provides a resilient machine learning pipeline using MLOps, Site Reliability Engineering (SRE), and
Chaos Testing, designed specifically to boost fault-tolerance, reliability, and scalability in predictive maintenance
systems. The CNN-LSTM hybrid model acquires 97.2% accuracy, 96.8% precision, and 96.1% F1-score whereas
important growths were proven in metrics like failure recovery time (45%), service availability (99.1%) and
scalability efficiency (30%). The system was robust, in terms of resilience; least down time was recorded with
effectively working on failures and reliability to execute mission-critical applications. The further work will
concern developing the framework to engage more complex industrial scenarios such as adaptive fault detection
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Reinfocement-learning based, whilst integrating multiple types of data sources and thus expanding resilience and
dependability within real-time environments.
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