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ABSTRACT

Although several techniques exist for analyzing bird sounds, very little has been done to evaluate
current approaches to determining and rating call similarity, especially when field recordings are
involved. Spectrographic cross-correlation, dynamic time warping, Euclidean distance between
spectrogram-based feature measurements, and random forest distance are the four methods for
calculating call similarity that are compared in this manuscript, which investigates a suite of
methodologies for analyzing flight calls of New World warblers. Since these signals may include
crucial demographic or ecological information, we put these techniques to the test on night cries,
which are brief, structurally simple vocalizations often used during nighttime migration. We
classified flight calls from three datasets—one with birds in captivity and two with birds in the
field—using the four methods described above. The four warbler species that are often recorded
during acoustic monitoring—American Redstart, Chestnut-sided Warbler, Hooded Warbler, and
Ovenbird—had a same amount of sounds in each dataset. We developed four similarity-based
classifiers using recordings from captives to train the classification models. These classifiers
were then evaluated on both the captive and field datasets. Classification accuracy was lower on
field recordings than captive recordings for each of the evaluated approaches, and we
demonstrate that these methods are unable to completely characterize the sounds of these warbler
species. With an accuracy of 67.6% in classifying field recordings, the random forest technique
outperformed the other three approaches we tested. The most popular approach in flight call
research, manual classification, was compared to the automated algorithms by having human
specialists categorize calls from each dataset. Even if automated methods are quicker, they still
can't compare to human classification when it comes to over 90% of field recordings that were
accurately classified by the experts. Nevertheless, because to the difficulties of working with this
data—for example, the fact that the field recordings include background noise and the fact that
the f-light cries of several species are structurally similar—some of the automatic classification
methods that were evaluated may be suitable for application in the actual world. Analysis,
detection, and classification of signals of short durations might benefit from the information
provided by this comparison of generally applicable approaches. Our findings suggest that, with
human supervision, a mix of feature measurements and random forest classification may be used
to assign flight sounds to species.
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1. Introduction
Bird vocalizations are used in numerous behavioral contexts and serve a variety of purposes,

such as maintaining contact within social groups or between mates, issuing warnings about
predators, and eliciting parental care from adults, and are often involved in mating dis- plays and
territorial defense (reviewed in Catchpole and Slater, 1995; Marler, 2004a). Whereas singing is
mostly associated with breeding be- haviors, calling can accompany a range of behaviors and
represents a more versatile and comprehensive method of communication. Howev- er, calls,
especially those of passerine songbirds, have often been neglected in the study of bird
communication, only recently receivingattention .Lanzone et al., 2009). Although references to
flight calls date to the turnof the 20th century (Libby, 1899), and despite more recent research,
some basic features remain poorly known, including their function, their evolutionary origins,
and the extent of within-individual and within-species variation (Farnsworth, 2005). Furthermore,
applicationsof flight calls for conservation goals have not advanced much beyondapplied natural
history studies. Improved knowledge of these vocaliza- tions could be useful in a variety of
applications, including efforts to mit- igate potential impacts of wind energy, track species
movements during seasonal migration, and estimate bird density using vocalization counts

(Farnsworth et al., 2004; Gagnon et al., 2010). A critical component forrealizing such applications

is the automated classification of flight callsto species.

Numerous methods have been developed for the automatic classifi- cation of avian vocalizations
(reviewed in Blumstein et al.; 2011). Suchmethods are typically employed to obtain information about
migration-patterns (Evans and Mellinger, 1999), monitor areas of human interest, such as wind farms
(Evans, 1998; Kunz et al., 2007), facilitate the con-servation of protected areas (Brandes, 2008), and
studying soundscape ecology (Kasten et al., 2012). For flight call analyses, however, automa-tion has
been only partially realized. To date, studies have combined manual and automatic processes, yielding
species-specific migration data (e.g., Larkin et al., 2002) and estimates of species richness (Wimmer
etal.; 2013), and permitting comparative analyses among spe- cies (Farnsworth and Lovette, 2005,
2008). However, more efficient flight call analysis is essential to monitor species across larger ecological
scales. The automatic classification of flight calls could greatly increase analysis efficiency, thereby
enhancing knowledge of avian ecology and facilitating improved conservation and management of wild
birds.

Many of the methods commonly applied to the classification of bird vocalizations are based on
traditional speech recognition techniques (Rabiner and Juang, 1993). These algorithms fall into
three general categories, and all remain widely used. The first includes spectrogram-based template
matching techniques, such as spectrogram cross corre- lation (Clark et al., 1987), which strictly
compares corresponding spec-trogram values, and dynamic time warping (e.g., Anderson et al., 1996;
Damoulas et al., 2010), which allows for some compression or expan-sion in time to permit better
matching. The second category includesfeature-based classifiers that define each call by a set of
spectro- temporal measurements. These measurements are then fed into auto- matic classifiers,
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which range from simple clustering techniques suchas nearest neighbor (e.g., Fagerlund and Harma,
2005) or Euclidean dis-tance between features (e.g., Tyagi et al., 2006), to more complex algo-rithms,
including Gaussian mixture models (e.g., Marcarini et al., 2008),autonomous neural networks (e.g.,
Cai etal., 2007; Ranjard and Ross, 2008), and support vector machines (e.g., Fagerlund, 2007). The
third is advanced pattern recognition, which has been used to classify entirebird song sequences,
using algorithms such as Hidden Markov Models (Kogan and Margoliash, 1998; Somervuo et al.,
2006; Trifa et al., 2008) or techniques such as ensemble processing using distributed pipelines
(Kasten et al., 2010). Although several classification techniques have been developed for avian

vocalizations, there is no clear consensus asto which method is most effective.
Here, we compare the ability of four similarity-based classifiers to

automatically assign flight calls to the correct warbler species using flight calls recorded from wild
birds in several locations. We investigate the effectiveness of the following four methodologies for
calculating call similarity: (1) spectrographic cross-correlation, (2) dynamic time warping, (3)
Euclidean distance between spectro-temporal measure- ments, and (4) random forest distance
between spectro-temporal mea- surements. To compare the ability of each method to correctly
group similar (i.e., conspecific) calls, we apply non-metric multidimensional scaling to the four
similarity matrices for extraction of latent acoustic measures used in a linear discriminant analysis
(e.g., Baker and Logue, 2003; Cortopassi and Bradbury, 2000, 2006). Taking advantage of recent
studies of New World warbler (Parulidae) flight calls (Farnsworth,2007b; Lanzone et al., 2009),
we use calls from the American Redstart (Setophaga ruticilla), Chestnut-sided Warbler (Setophaga
pensylvanica),Hooded Warbler (Cardellina citrina), and Ovenbird (Seiurus aurocapillus)to compare the
methods listed above. These species were selected be- cause they are frequently recorded in North
American nocturnal acoustic monitoring studies, and because they may be challenging to classify due
to the structural similarity of their calls, therefore making our study more relevant for real-world
applications of these classification tech- niques. Lastly, to compare performance between these
automated tech-niques and manual classification, we contrast the correct classification rates of the
four automated methods to those of human experts.

2. Materials and methods
2.1. Data collection

Three datasets were used in this study; one to train and test the clas-sification models, and two
for testing only. The “captive” dataset, which was used to train and test the classifier models,
contains flight call re-cordings taken from temporarily captured wild birds. The remaining two
datasets contain calls recorded from wild birds in flight. The “diur- nal” dataset was recorded during
daylight hours in Northeastern North America, and the “nocturnal” dataset was recorded during
evening hours (i.e., after civil twilight at dusk) in the Gulf of Mexico. Because the diurnal and
nocturnal datasets are field recordings, rather than re- cordings made in a controlled
environment, these recordings have high amounts of wind noise and a much lower signal to
noise ratio, making them realistic test cases for classification (Lanzone et al., 2009).
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2.1.1. Captive recordings

The captive flight call dataset was recorded at Powdermill Avian Research Center near
Pittsburgh, PA during April-May and September— October 2005. Birds were captured using mist
nets, individuals werebanded with a United States Geological Survey band, and the date andtime
of recording, as well as the sex (male, female, unknown) and ap- proximate age (hatching-year,
after hatching-year) of each individual was recorded. The birds were placed in an enclosed
recording unit equipped with a microphone, and all vocalization produced by the focal bird were
recorded (Lanzone et al., 2009). Playbacks of flight calls from conspecifics and heterospecifics,
which were five minutes in duration, were used to elicit flight calls from non-calling, captive birds.
The micro- phone was connected to a computer running Raven Pro 1.4 64-bit (Charif et al.,
2004) and recordings were saved as 44,100 kHz, 24-bitWAYV files. The birds were released after
a 10-minute period regardlessof the number of calls produced.

212 Diurnal field recordings

The diurnal flight call dataset was collected in Pennsylvania and New York in May-July and
September and October 2005. Calls were recorded from wild individuals during flight in daylight
hours. Recordings were made using a Sennheiser MKH 70 microphone (Sennheiser Electronic, Old
Lyme CT), either to an analog recording device (Sony TCM-5000 re-corder) or a digital recording
device (Nagra Ares BB + flash memory re-corder). All flight calls were either recorded or digitized
as 16-bit, 22,050 Hz wav files. For analyses, only flight calls recorded with a clear line of sight
between the microphone and the bird are included. Calls recorded with interfering vegetation or
structures, or overlap- ping flight calls were excluded (see Farnsworth, 2007b). To avoid collecting
multiple samples from the same individuals, the captive and diurnal datasets were collected at
different locations and on dif- ferent days.

213. Nocturnal field recordings

The nocturnal flight call dataset was collected from September 8thto November 5th, 1999 on
the Viosca Knoll oil platform (VK 786), approximately 145 km southeast of the Alabama coast
(29°1344N;


https://www.researchgate.net/publication/277493946_Revealing_Undocumented_or_Poorly_Known_Flight_Calls_of_Warblers_(Parulidae)_Using_a_Novel_Method_of_Recording_Birds_in_Captivity?el=1_x_8&enrichId=rgreq-e33c6f25-c19b-45f1-b15b-6a2727f9064d&enrichSource=Y292ZXJQYWdlOzI2MDAyNzg5NTtBUzoxMDE0NjMyOTIzODMyMzdAMTQwMTIwMjE0MjU1NA%3D%3D

s oy or ijaiem.com/Sep 2019/ Volume 8/Issue 1/Article No-1/36-61
ISSN: 2319-4847

87°4655W), during local civil twilight. A portable pressure zone micro- phone with a Knowles
Electret EK3132 microphone element was used to record nocturnal vocalizations (see Evans,
1994, Evans and Mellinger, 1999; Evans and Rosenberg, 2000; Farnsworth et al., 2004; Larkin et
al., 2002). The microphone element has a relatively flat fre- quency response in the 1-10 kHz
range. The recordings were made ona videocassette recorder (VCR; Sony SLV-675) in extended
play mode. The VCR recorded audio from the microphone on 8-h 19-min video home system
(VHS) tapes through a portable stereo cassette tape deck (Optimus SCT-86; Radio Shack, Fort
Worth, TX) that amplified input signal strength (gain setting: +7 dB). Recordings were digitized
at 22,050 Hz, 16-bit sample size (see Farnsworth and Russell, 2007). Species-identity labels for
the flight calls in the diurnal and nocturnal datasets were established by A. Farnsworth.

2.2. Call characteristics

Spectrograms of exemplar flight calls collected from the focal speciesare shown in Fig. 1. The calls
of the American Redstart (AMRE) and the Ovenbird (OVEN) (Fig. 1A and D, respectively) both
exhibit a “check-mark” shape when viewed as a spectrogram and have frequency mod- ulation in the
tail end of calls, though the AMRE flight call starts witha longer downward slope. The flight calls
of the Chestnut-sided warbler (CSWA) and Hooded warbler (HOWA) (Fig. 1B and C, respectively)
have numerous inflections and exhibit high frequency modulation throughout the entire signal. The
structural characteristics of calls col- lected from each species are summarized in Tables B.2, B.3,
and B.4.

23. Data extraction

Flight calls were manually clipped from the captive and diurnal re- cordings by using Raven Pro
1.4 (Charif et al., 2004) to browse recording spectrograms and extract portions of audio files
containing calls. A 256-sample Fast Fourier Transform (FFT) with 256-sample Hann windows and
an advance of 38 samples was used to make spectrograms of cap- tive recordings, and a 128-sample
FFT with 128-sample Hann windows and an advance of one sample was used for diurnal and
nocturnal re- cordings. For captive recordings, flight calls from focal birds were differ-entiated from
playback calls by their relatively higher signal-to-noise ratio (SNR). For the nocturnal recordings,
calls were automatically detected using the Raven Pro. 1.4 Band Limited Energy Detector (Table
B.1). Selections created by the Band Limited Energy Detector were reviewed by the authors for
presence of the target species. Raven selection tables containing the selected calls were first
consoli- dated using Google Refine (Huynh and Mazzocchi, 2012). Next, a bufferof 5 ms was added
on either side of call selections, and calls were auto- matically clipped from recordings using SoX
(Sound eXchange v. 14.3.1, http://sox.sourceforge.net/).

The number of calls collected for each species in the three datasets isshown in Table 1. To create
our final three datasets, we randomly select-ed 400 calls (100 from each species) from the captive
recordings, 360 calls (90 from each species) from the diurnal recordings, and 144 calls (36 from
each species) from the nocturnal recordings, totaling 904 flightcalls. The number of calls used in
each dataset was dictated by the species with the fewest calls. The 400 selected captive calls
were downsampled to 22,050 Hz, giving the final 904 calls the same sampling
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Fig. 1. Time-frequency spectrogram of typical warbler flight calls. Shown here are the four
focal species used in this study: (A) American Redstart, (B) Chestnut-sided warbler, (C)
Hooded warbler, and (D) Ovenbird.

4 S. Keen et al. / Ecological Informatics xxx (2014) xxx—xxx

Table 1

Summary of flight calls used in this study. This table contains the number of flight calls
collected from each species and location, the datasets to which collected calls belong, and the
number of calls used for training and testing of classification models. For the captive calls, we
collected between 1 and 63 (mean = SD: 16.35 * 13.82) calls from each AMRE in-dividual, 1
and 98 (25.24 &+ 24.11) calls from CSWA, 1 and 39 (11.53 £ 10.60) calls from HOWA, and 1
and 37 (12.31 % 9.49) calls from OVEN.

Ellis (2008), and executed using Matlab, 2010a
( krﬂ:esMatn:)NaQ;Ks, ZUI:LH}aIIs collected Calls used in analysis

AMRE Captive 790 100
AMRE Diurnal 266 90
AMRE Nocturnal 241 36
CSWA Captive 385 100
CSWA Diurnal 118 90
CSWA Nocturnal 66 36
HOWA Captive 192 100
HOWA Diurnal 91 90

HOWA Nocturnal 36 26
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rate. Spectrograms were then created for each call using a 1024-point FFT with 256-point frame
length using Hann windows and an advance of one point between frames. This small advance

between frames re-sulted in a time resolution of 0.045 ms and a frequency resolution of
21.5 Hz in all call spectrograms.

24. Call similarity analyses

24.1. Spectrogram cross correlation

Spectrogram cross-correlation (SPCC) typically measures the simi- larity between pairs of
spectrograms by calculating similarity as a function of time (Clark et al., 1987; Cortopassi and
Bradbury, 2000; Farnsworth, 2007b). We used the SPCC-PCO tool (SoundXT; Cortopassiunpublished
data; used previously in Cortopassi and Bradbury, 2000, 2006) to calculate the peak correlation
values for all pairs of flight calls across both time and frequency. Although most previous applica-
tions of SPCC involved correlation along time only, it was necessary for our study to also allow
sliding along the frequency axis as flight calls may exhibit frequency shifting both within and among
individualsand species. We used a maximum time lag of 127 ms (the duration ofthe longest flight
call in the dataset) and a maximum frequency lag of 3 kHz. The frequency lag was determined
using visual inspection of call spectrograms, which confirmed that calls did not vary in center fre-
guency or bandwidth by more than this amount. All spectrogram matrix entries represented power
in decibel scale (dB/Hz), and spectrogram matrices were normalized to contain values between 0
and 1, ensuring that peak correlation values would fall within this range. To minimize correlation
between background noise in pairs of recordings we usedonly spectrogram values within the 3-10.5
kHz range, in effect applying a bandpass filter to all call recordings. Frequency shifting, matrix nor-
malization, and bandlimiting employed here are all built-in features and configuration options of
the SoundXT tool itself. Applying this tech-nique, we calculated pair-wise peak correlation values
for all pairwisecombinations of flight calls.

24.2. Dynamic time warping

Dynamic time warping(DTW,-Vintsyuk, 1968) calculates pairwise similarity between vectors or
matrices while permitting some expan- sion or compression in time in order to maximize similarity.
DTW has been most commonly applied in automatic speech recognition(Deller et al., 1993; Rabiner
et-al., 1978; Sakoe and Chiba, 1978), and, more recently, in the detection and classification of avian
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vocalizations (e.g., Brown et al., 2006; Damoulas et al., 2010; Kogan and Margoliash, 1998). DTW
effectively stretches or shortens calls in time, allowing forcalls with similar contour shapes but
different durations to be scored
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243. Euclidean distance between feature measurements

Direct call measurement was performed on acoustic features (sum-marized in Table B.5) of all
flight calls using an adapted version of the Acoustat sound measurement tool (Fristrup and
Watkins, 1992, 1993). Acoustat measurements were applied to spectrogram values within
“event” boxes manually created in Raven Pro 1.5 (Charif et al., 2004), which entirely enclosed
the power within the fundamental frequency of each flight call. The measurement process
involves collapsing the signal's time-frequency spectrogram into an aggregate power envelopeas
a function of time and an aggregate power spectrum as a function offrequency. From these, robust
measures of central tendency and disper-sion are extracted using order statistics (Cortopassi,
2006; Fristrup and Watkins, 1992, 1993, www.birds.cornell.edu/brp/research/algorithms/
RSM.html, Cortopassi and Fristrup, personal communication). We cal-culated Euclidean distances
between the Acoustat energy distribution measurements using the ecodist package (Goslee and
Urban, 2007) in R (R Core Team, 2013). This method is hereafter referred to as Feature-ED.

24.4. Random forest distance between feature measurements

Using the feature measurements described above, we created a sec- ond set of pairwise
similarity measurements by applying a random for-est (Breiman, 2001) decision tree to these
values and calculating the proximity metric between every flight call pair in the dataset. Random
forests are combinations of decision trees created using a shared feature space, where each tree is
built on a subsample of the given dataset in atechnique called “bagging”. Individual decision trees
perform classifica-tions based on decisions at nodes within each tree, using logical or arith-metic
comparisons of a subset of feature measurements which is itself chosen randomly for each node.
A random forest is typically used in asupervised manner for classification tasks. However, it is
also possible to use the algorithm in an unsupervised manner producing a measure of similarity
between data points without considering their class mem-bership (see Liaw and Wiener, 2002).
We used the randomForest (Liawand Wiener, 2002) package in R version 3.0.0 (R Core Team,
2013) to generate a pairwise proximity matrix between the 904 calls in the dataset, based on the
81 feature measurements. We used 500 trees, with 9 features tried at each node. We converted
this proximity matrix to a distance matrix using the transformation one minus proximity. This
method is abbreviated as Feature-RF.

25. Creation of similarity-based classifiers

Our aim was to determine which analysis method could provide the best relative similarity
measurements of calls in our dataset, and thuscould best facilitate classification of call recordings
by species. The anal-yses described above yielded four similarity matrices representing pairwise
relationships between the 904 calls in the three datasets. To determine which method best
calculates similarity between call record- ings, we first used non-metric multidimensional
scaling (NMDS) to model pairwise relationships between calls in 5-dimensional space using
the ecodist package (Goslee and Urban, 2007) in R (R Core Team, 2013), creating four unique
NMDS ordinations each computed using five iterations (minimum stress and R? for each
ordination: SPCC: 0.107, 0.903; DTW: 0.105, 0.924; Features-ED: 0.001, 0.99;
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Features-RF: 0.21, 0.465). Although the four pairwise similarity matriceswere created as an
intermediate step and were ultimately used to train
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classification models for each method, we illustrate the effectivenessof each similarity analysis to
cluster calls of the same species by creating 2-D ordination plots showing the distribution of calls in
NMDS space foreach set of similarity measurements (Fig. B.1).

To classify calls by species, we used the MASS R package (Venablesand Ripley, 2002) to create

linear discriminant analysis (LDA) models for each of the four similarity-based methods, using the
captive callsas training data. To evaluate LDA performance, we used 100-fold, leave-one out cross-
validation of the training data, and calculated the percentage of calls correctly classified for each
method (mean % sd: SPCC 0.715 + 0.024, DTW: 0.658 =+ 0.024; Features-ED: 0.833 %
0.019; Features-RF: 0.888 + 0.25). After characterizing the perfor- mance of each classifier using
the training dataset, calls from the diurnaland nocturnal datasets were then classified using the four
LDA models. By using individuals as output variables and latent measures as input variables, it was
possible to generate classification rates for correctly identifying calls to known species. A summary
of the steps involved ineach method and the motivation for implementation can be found in Table
A.l. A flowchart illustrating the order in which each methodwas applied is shown in Fig. A.1.

26. Performance measures

26.1. Comparisons among automated methods

To determine how well each of the models described above per- formed relative to one another,
we summarized the classification results from each model in several confusion matrices. By
comparing the distri-bution of values across confusion matrices we were able to compare theabilities
of each method to correctly separate species and identify com-mon sources of error. Additionally,
we calculated the sensitivity and specificity of each LDA model when classifying calls from each
species. Sensitivity was calculated as the percentage of calls known to be froma certain species that
were correctly classified as such. Specificity was found by summing all calls that were neither known
to be from a certainspecies or predicted to be from that species and dividing that by the total number
of calls known to be from all other species. These values are reported in the confusion matrices
created for each model. To eval-uate overall performance of each LDA model, we summed the
number of correct classifications for each species (the numbers along the di- agonal of the confusion
matrix), and divided by the total number of calls being classified. The resulting value is referred to
as the “correct classification rate”, and this measurement represents a common metric for assessing
the abilities of an LDA to discriminate among species.

262 Expert human reviewers

To compare performance of the four similarity-based methods to human classification, we
asked three expert human reviewers to manu-ally classify a random subset of 36 calls per species
from the three datasets, totaling 432 calls. Each of the expert reviewers has extensive knowledge
of flight calls and years of experience studying avian vocali-zations, but had not previously seen any
call in this dataset. The sound files were distributed to the experts without accompanying
metadataand in random order, ensuring that calls from the same dataset and/or species wouldn't
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be viewed consecutively, potentially biasing the ex- perts' classification. Using Raven Pro 1.5
(Charif et al., 2004), the expertsvisually inspected spectrograms and listened to recordings for
each flight call in order to classify each call by species to the best of their ability. Spectrogram
parameters were determined by the personal preference of the experts to optimize their ability
to accurately clas-sify the flight calls, which is common practice amongst experts. To compare
human performance to the automated classification methods, we calculated correct classification
rates for each expert reviewer as well.
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3. Results
3.1. Classifier performance

The four automated classification methods performed relatively well when tested on the captive
dataset, which was also used to train each model (correct classification rate: SPCC: 71.5%; DTW:
65.75%; Feature- ED: 83.25%; Feature-RF: 88.75%). Despite the relatively high correct
classification rates of captive calls by the automated techniques, the classification accuracy of
all techniques dropped significantly when tested on the diurnal and nocturnal datasets (Fig. 2).
The classificationaccuracy of three of the automated techniques, SPCC, DTW and Feature-ED,
decreased when tested on the diurnal dataset (correct clas-sification rates were 55.83%, 52.22%, and
26.94%, respectively) as well asthe nocturnal dataset (correct classification rates were 59.03%,
54.17%,and 25%). However, the classification accuracy of Feature-RF did not de-crease as severely
when tested on field recordings; this method had cor-rect classification rates of 67.78% for the
diurnal dataset and 67.36% forthe nocturnal dataset. Whereas Feature-ED had the lowest correct
clas-sification rates on field recordings, at least 25% lower than SPCC and DTW on both the diurnal
and nocturnal datasets, Feature-RF performed better than all other automated methods when
tested on field record-ings, with correct classification rates approximately 10% higher than
SPCC and DTW (Fig. 2). As expected, the human experts had a high clas-sification accuracy, with
each person having correct classification rates over 90% for the captive calls, over 92% for diurnal
calls, and over 88%for nocturnal calls.

3.2. Sources of classification error

Each of the tested methods exhibited some degree of classification error when discriminating
between calls from CSWA and HOWA, as well as calls from AMRE and OVEN. When tested with
the field record-ings, SPCC and Feature-RF often misclassified HOWA calls as CSWA calls,and DTW
often had equal amounts of misclassification between these two species. This is evidenced by the
relatively low sensitivity scores found for AMRE and HOWA, and low specificity scores found for
CSWA and, in some cases, OVEN (Tables 2 and 3). Feature-ED classifiedall HOWA calls as CSWA
calls in both field datasets, and incorrectly clas-sified nearly all calls as CSWA when tested with the
nocturnal dataset. SPCC, DTW, and Feature-RF often misclassified AMRE calls as OVEN calls when
tested with both field datasets, and also misclassified OVEN as AMRE, to a lesser extent (Tables 2
and 3). Although the human ex- perts had relatively high correct classification rates overall, most
mis- classification errors arose from confusion between AMRE and OVEN calls, and CSWA and
HOWA calls (Tables B.6, B.7, and B.8).

4. Discussion

41. Challenges inherent to the dataset
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Despite much interest in the classification of avian vocalizations and evidence that flight calls are
highly useful in comparative analyses and monitoring migration patterns (e.g., Farnsworth,
2005), relatively fewstudies have focused specifically on automated flight call classification (e.g.,
Mills, 1995). Flight calls are extremely short (typicalty tess than 100 ms), and thus sequence-
based classifiers that have been shown to successfully classify song by species are not applicable
to these signals. Therefore, classifiers that rely upon template matching and feature ex- traction
are more common in previous studies of flight and contact calls, and have been shown to
achieve high accuracy rates (Andersonet al., 1996; Bradbury et al., 2001; Damoulas et al., 2010;
Schrama et al., 2008; Vehrencamp et al., 2003). However, to our knowledge, no previous studies
have explicitly examined the classification of highly similar flight calls from species that exhibit
similar spatiotemporal mi-gration phenology (but see Farnsworth and Lovette, 2008), although
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Fig. 2. Percentage of flight calls correctly classified by human experts and automated methods. The correct
classification rates are shown for the three datasets used in this study: captive recordings, diurnal recordings,
and nocturnal recordings. Human experts classified 144 flight calls from each dataset, and automated methods
were used to classify 400 captive calls, 360 diurnal calls, and 144 nocturnal calls. The automated methods were

trained using the captive call recordings, thus leave-one-out cross validation was used to obtain classification
results for this dataset.

this is an increasingly important challenge for biologists studying inter-specific migration patterns.

The low correct classification rates observed in our study, rangingfrom 25 to 68% in field recordings, can partially be
attributed to our de-liberate choice of some species that are similar to one another and theuse of field recordings as test
data. Previous studies have often tested classification techniques only on captive recordings, or those taken at
extremely close range. Here, we intentionally included calls recordedunder typical field conditions to more accurately
test methods that arecommonly used on data characteristic of passive acoustic monitoring

Results of classification of diurnal flight calls. Field recordings of flight calls collected during daylight hours were
classified by models based on (A) SPCC, (B) DTW, (C) Feature-ED, and
(D) Feature-RF. The models were tested on a dataset of 360 calls, comprising 90 from each focal species.
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Observed Predicted Predicted Predicted Predicted Sensitivity
AMRE CSWA HOWA OVEN

A

AMRE 19 7 6 58 0.21

CSWA 0 80 10 0 0.89

HOWA 4 62 24 0 0.27

OVEN 3 Y 0] (3 0.8/

Specificity 0.97 0.72 0.94 0.79

B

AMRE 14 2 8 66 0.16

CSWA 0 48 42 0 0.53

HOWA 0 47 42 1 0.47

OVEN 0] 0] 6 84 0.93

Specificity 1.00 0.82 0.79 0.75

(o

AMRE 24 65 1 0 0.27

CSWA 17 73 0 0 0.81

HOWA 30 60 0 0 0.00

OVEN 43 45 2 (0] 0.0U

Specificity 0.67 0.37 0.99 1.00

D

AMRE 33 2 8 47 0.37

CSWA 4 73 11 2 0.81

HOWA 1 19 70 0 0.78

UVEN 5 0] 3 82 U.YL

Specificity 0.96 0.92 0.92 0.82
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projects. The diurnal and nocturnal datasets exhibit high noise levelsdue to wind and other ambient
noise, making “clean” signal analysis impossible. Thus, despite relatively poor performance of
automated methods in field conditions, the use of field recorded datasets in this study enhances the
relevance of our results for real-world applications.

4.2. Evaluation of classification techniques

Each of the tested methods has drawbacks or limitations, particular-ly when applied to field recordings.
SPCC and DTW are both computa-tionally expensive and are susceptible to classification error due to
matching background noise in spectrograms rather than the signal of in-terest, a common shortcoming of
template matching algorithms. For ourfield recordings, we recognize and accept this as an integral source
oferror in such data. SPCC and DTW are also much more computationally expensive, and without the use of
akernel (e.g., Damoulas et al., 2010),they may be impractical to implement. Both feature-based techniques
are computationally inexpensive, but are ultimately limited by the qual-ity of features used; a universal
challenge in classification of acousticdata. The distance metric used to measure similarity between
record-ings of calls can also have a large impact on correct classification rates, as shown in Fig. 2. We suspect
that using Euclidean distance to estimate call similarity was less effective, as background noise may have
resulted in highly inaccurate feature measurements and may have introduced errors into distance
calculations. The Feature-RF method is likely moreresilient to background noise because pairwise distance
is not a functionof the difference of pairs of feature measurements, but instead the distance between
decision trees. With additional features that are less affected by background noise, it may be possible to
improve per-formance of both feature-based methods. Other feature sets have been developed for the
purpose of classifying avian vocalizations (e.g., Tchernichovski et al., 2000), and it would be interesting
to testclassification based on these.

4.3. Similarity among flight call structures

The common classification errors among all models were confusion between AMRE and OVEN calls, and
between CSWA and HOWA calls. Confusion between these species occurred in human classification as well,
though to a lesser extent (Tables B.6-B.8). AMRE and OVEN flight
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Table 3

Results of classification of nocturnal flight calls. Field recordings of flight calls collected during nighttime hours
were classified by models based on (A) SPCC, (B) DTW,

(C) Feature-ED, and (D) Feature-RF. The models were tested on a dataset of 144 calls, com-prising 36 from
each focal species.

Observ Predict Predict Predict Predict Sensiti
ed ed ed ed ed vity
AMRE CSWA HOWA OVEN

A

AMRE 17 2 3 14 0.47
CSWA O 31 0 5 0.86
HOWA 4 24 7 1 0.19
UVEN 1 5 U 3U U.8b
Specifi  0.95 0.71 0.97 0.81

city

B

AMRE 7 6 7 16 0.19
CSWA © 25 7 4 0.69
HOWA O 7 28 1 0.78
OVEN V] 4 14 13 U.5V0
Specifi  1.00 0.84 0.73 0.81

city

c

AMRE 0 36 0 0 0.00
CSWA O 36 0 0 1.00
HOWA 1 35 0 0 0.00
OVEN U 36 U 0] 0.0V
Specifi  0.99 0.01 1.00 1.00

city

D

AMRE 24 1 3 8 0.67
CSWA 3 24 3 6 0.67
HOWA O 15 19 2 0.53
OVEN 6 [§] 0] 30 0.83
Specifi  0.92 0.85 0.94 0.85

city

calls resemble a “check-mark” (Fig. 1A and D), but can be distinguished most often by the longer downsweep at the
beginning of AMRE calls, the overall longer duration of AMRE calls, and the higher level of mod-ulation in the second
half of OVEN calls (Evans and O'Brien, 2002).



35

n s o ijaiem.com/Sep 2019/ Volume 8/Issue 1/Article No-1/36-61
ISSN: 2319-4847

However, we observed high variation in call structure found both withinand among individuals in each species in our
dataset, and certain call variants can appear more similar to those of heterospecifics than con-specifics, as shown in
Fig. 3. CSWA flight calls (Fig. 1B) and HOWA flightcalls (Fig. 1C) both have high frequency modulation, though the
CSWACcall is longer and maintains a constant average frequency over time, whereas HOWA calls have a “swooping”
quality (Evans and O'Brien, 2002), with fluctuating rates of modulation and increasing or decreas-ing average
frequency. Within-individual and within-species variationplay a large role in confusion between these species as well
(Fig. 3). Fur-thermore, when calls are somewhat masked by background noise, evencalls with relatively different
spectral structure may become indistin-guishable, which appears to be the primary cause of misclassification of
field recordings.

44. Comparison to previous studies

Of the four similarity-based methods, the Feature-RF proved to bethe most accurate when classifying
calls from each of the three datasets. Other bioacoustics studies have had similar success using random for-
ests in the classification of bird calls (Briggs et al., 2009), as well ascalls of bats (Armitage and Ober,
2010) and cetaceans (Barkely et al.,2011; Henderson et al., 2011). Briggs-etal.(2009) showed that a 100-
tree random forest had a classification accuracy of up to 48.6%, compa- rable-with-adaboost and support
vector machines, when classifying calls from 20 bird species found in the western United States.
Armitage and Ober (2010) obtained correct classification rates of 84-96% when classifying calls from 11
different bats species using arandomforest with 1000 trees. Taking feature measurements from eight species
of delphinids, Barkely et al. (2011) had an overall correct classification score of 65.0% using a 500 tree
random forest design. Using a random forest model with 5000 trees;Henderson et al. (2011) had a correct
clas-sification rate of 64.8% for two types of whale vocalizations.

Frequency (kHz)
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Fig. 3. Heterospecific flight calls that exhibit similar call shape and structure. Flight calls collected
from the (A) American Redstart and (B) Ovenbird often exhibit similar “check mark” structures with
fundamental frequencies between 7 and 9 kHz and durations of approximately 70 ms.
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4.5. Recommendations

Based on our results and those mentioned above, we recommend using feature-based random forest
classification, as both feature extrac-tion and computation of random forest distance are fast and compu-
tationally inexpensive. To illustrate the ability of the Feature-RF methods to group calls within species, a
two-dimensional NMDS or- dination plot of captive calls is shown in Fig. B.1. Although only an
unsupervised random forest model is appropriate for this study, asit permits direct comparisons to the
three other similarity-based methods, we also investigated the use of a supervised random forestmodel. In
a supervised random forest, trees are constructed with knowledge of the class of each sample. The supervised
random forest resulted in an overall accuracy rate of 96.25% on the captive record-ings, 76.67% on the
diurnal recordings, and 75.69% on the nocturnal recordings. These results are not directly comparable to the
other techniques tested here, but we recommend that this method be fur- ther explored in future studies.
Additionally, we recommend the ex-ploration of the option to have an additional class to which calls may
be assigned if they are not well suited to any existing classes, as might arise when working with “real
world” datasets. Presently,the classifiers presented here cannot assign calls that do not belong to any class

to an unknown category, though there is value in addingthis option.
Though there is still much unknown about the extent of variation in

flight calls, and best practices for applying the few similarity-based clas-sification methods practical for analysis
of field recordings are unclear, the different techniques presented here offer insight into potential solu-tions
for this challenging problem. If there is any hope of using acousticmonitoring of flight calls in real-time or
near-real-time applications, classifications methods that take advantage of feature sets similar to the one
used here will be key. Knowing that feature-based methods, rather than template-based methods, are more
appropriate for flight call classification, sets the stage for others to apply more advanced clas- sification
techniques, such as support vector machines or artificial neu-ral networks, to these challenging signals.

5. Conclusions

We provide strong evidence that similarity-based approaches have great potential
for correct species-level classifications of four species of wood-warblers. Although
human reviewers are still substantially bet-ter at classification of these signals, human
classification is impractical even at the present-day scales of analysis, as tens of
thousands of flightcalls can be recorded from a single monitoring station in a single
migration season. We recommend a continuing line of research using feature-based
classification and the random forest distance metric. Forthe present, we recommend
a combination of human review and unsu- pervised random forest methods for the
most efficient and accurate analysis of flight call signals. In future work, assigning
labels to flight calls automatically could permit human reviewers to continue to over-
see classification while greatly improving efficiency and allowing more tedious,
low-level classification to be performed by detection-classification algorithms.

The need for automation in acoustic monitoring is critical at multiple steps. The
methods that we compared provide a solid foundation for au- tomating the
classification process and for future research on additional feature sets needed to
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improve classification. Recent work on automatic detection is part of the solution to
improving efficiency (Ross and Allen, in press).
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