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A B S T R A C T  
 

Although several techniques exist for analyzing bird sounds, very little has been done to evaluate 

current approaches to determining and rating call similarity, especially when field recordings are 

involved. Spectrographic cross-correlation, dynamic time warping, Euclidean distance between 

spectrogram-based feature measurements, and random forest distance are the four methods for 

calculating call similarity that are compared in this manuscript, which investigates a suite of 

methodologies for analyzing flight calls of New World warblers. Since these signals may include 

crucial demographic or ecological information, we put these techniques to the test on night cries, 

which are brief, structurally simple vocalizations often used during nighttime migration. We 

classified flight calls from three datasets—one with birds in captivity and two with birds in the 

field—using the four methods described above. The four warbler species that are often recorded 

during acoustic monitoring—American Redstart, Chestnut-sided Warbler, Hooded Warbler, and 

Ovenbird—had a same amount of sounds in each dataset. We developed four similarity-based 

classifiers using recordings from captives to train the classification models. These classifiers 

were then evaluated on both the captive and field datasets. Classification accuracy was lower on 

field recordings than captive recordings for each of the evaluated approaches, and we 

demonstrate that these methods are unable to completely characterize the sounds of these warbler 

species. With an accuracy of 67.6% in classifying field recordings, the random forest technique 

outperformed the other three approaches we tested. The most popular approach in flight call 

research, manual classification, was compared to the automated algorithms by having human 

specialists categorize calls from each dataset. Even if automated methods are quicker, they still 

can't compare to human classification when it comes to over 90% of field recordings that were 

accurately classified by the experts. Nevertheless, because to the difficulties of working with this 

data—for example, the fact that the field recordings include background noise and the fact that 

the f-light cries of several species are structurally similar—some of the automatic classification 

methods that were evaluated may be suitable for application in the actual world. Analysis, 

detection, and classification of signals of short durations might benefit from the information 

provided by this comparison of generally applicable approaches. Our findings suggest that, with 

human supervision, a mix of feature measurements and random forest classification may be used 

to assign flight sounds to species.  
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1. Introduction 
Bird vocalizations are used in numerous behavioral contexts and serve a variety of purposes, 

such as maintaining contact within social groups or between mates, issuing warnings about 

predators, and eliciting parental care from adults, and are often involved in mating dis- plays and 

territorial defense (reviewed in Catchpole and Slater, 1995; Marler, 2004a). Whereas singing is 

mostly associated with breeding be- haviors, calling can accompany a range of behaviors and 

represents a more versatile and comprehensive method of communication. Howev- er, calls, 

especially those of passerine songbirds, have often been neglected in the study of bird 

communication, only recently receiving attention .Lanzone et al., 2009). Although references to 

flight calls date to the turn of the 20th century (Libby, 1899), and despite more recent research, 

some basic features remain poorly known, including their function, their evolutionary origins, 

and the extent of within-individual and within-species variation (Farnsworth, 2005). Furthermore, 

applications of flight calls for conservation goals have not advanced much beyond applied natural 

history studies. Improved knowledge of these vocaliza- tions could be useful in a variety of 

applications, including efforts to mit- igate potential impacts of wind energy, track species 

movements during seasonal migration, and estimate bird density using vocalization counts 

(Farnsworth et al., 2004; Gagnon et al., 2010). A critical component for realizing such applications 

is the automated classification of flight calls to species. 

Numerous methods have been developed for the automatic classifi- cation of avian vocalizations 

(reviewed in Blumstein et al., 2011). Such methods are typically employed to obtain information about 

migration patterns (Evans and Mellinger, 1999), monitor areas of human interest, such as wind farms 

(Evans, 1998; Kunz et al., 2007), facilitate the con- servation of protected areas (Brandes, 2008), and 

studying soundscape ecology (Kasten et al., 2012). For flight call analyses, however, automa- tion has 

been only partially realized. To date, studies have combined manual and automatic processes, yielding 

species-specific migration data (e.g., Larkin et al., 2002) and estimates of species richness (Wimmer 

et al., 2013), and permitting comparative analyses among spe- cies (Farnsworth and Lovette, 2005, 

2008). However, more efficient flight call analysis is essential to monitor species across larger ecological 

scales. The automatic classification of flight calls could greatly increase analysis efficiency, thereby 

enhancing knowledge of avian ecology and facilitating improved conservation and management of wild 

birds. 

Many of the methods commonly applied to the classification of bird vocalizations are based on 

traditional speech recognition techniques (Rabiner and Juang, 1993). These algorithms fall into 

three general categories, and all remain widely used. The first includes spectrogram- based template 

matching techniques, such as spectrogram cross corre- lation (Clark et al., 1987), which strictly 

compares corresponding spec- trogram values, and dynamic time warping (e.g., Anderson et al., 1996; 

Damoulas et al., 2010), which allows for some compression or expan- sion in time to permit better 

matching. The second category includes feature-based classifiers that define each call by a set of 

spectro- temporal measurements. These measurements are then fed into auto- matic classifiers, 

https://www.researchgate.net/publication/277388231_A_Comparison_between_Nocturnal_Aural_Counts_of_Passerines_and_Radar_Reflectivity_from_a_Canadian_Weather_Surveillance_Radar?el=1_x_8&enrichId=rgreq-e33c6f25-c19b-45f1-b15b-6a2727f9064d&enrichSource=Y292ZXJQYWdlOzI2MDAyNzg5NTtBUzoxMDE0NjMyOTIzODMyMzdAMTQwMTIwMjE0MjU1NA%3D%3D
https://www.researchgate.net/publication/227734012_Acoustic_monitoring_in_terrestrial_environments_using_microphone_arrays_Applications_technological_considerations_and_prospectus?el=1_x_8&enrichId=rgreq-e33c6f25-c19b-45f1-b15b-6a2727f9064d&enrichSource=Y292ZXJQYWdlOzI2MDAyNzg5NTtBUzoxMDE0NjMyOTIzODMyMzdAMTQwMTIwMjE0MjU1NA%3D%3D
https://www.researchgate.net/publication/265190185_Monitoring_grassland_birds_in_nocturnal_migration?el=1_x_8&enrichId=rgreq-e33c6f25-c19b-45f1-b15b-6a2727f9064d&enrichSource=Y292ZXJQYWdlOzI2MDAyNzg5NTtBUzoxMDE0NjMyOTIzODMyMzdAMTQwMTIwMjE0MjU1NA%3D%3D
https://www.researchgate.net/publication/228373156_Assessing_Impacts_of_WindEnergy_Development_on_Nocturnally_Active_Birds_and_Bats_A_Guidance_Document?el=1_x_8&enrichId=rgreq-e33c6f25-c19b-45f1-b15b-6a2727f9064d&enrichSource=Y292ZXJQYWdlOzI2MDAyNzg5NTtBUzoxMDE0NjMyOTIzODMyMzdAMTQwMTIwMjE0MjU1NA%3D%3D
https://www.researchgate.net/publication/228776163_Automated_sound_recording_and_analysis_techniques_for_bird_surveys_and_conservation?el=1_x_8&enrichId=rgreq-e33c6f25-c19b-45f1-b15b-6a2727f9064d&enrichSource=Y292ZXJQYWdlOzI2MDAyNzg5NTtBUzoxMDE0NjMyOTIzODMyMzdAMTQwMTIwMjE0MjU1NA%3D%3D
https://www.researchgate.net/publication/235654716_The_Remote_Environmental_Assessment_Laboratory%27s_Acoustic_Library_An_archive_for_studying_soundscape_ecology?el=1_x_8&enrichId=rgreq-e33c6f25-c19b-45f1-b15b-6a2727f9064d&enrichSource=Y292ZXJQYWdlOzI2MDAyNzg5NTtBUzoxMDE0NjMyOTIzODMyMzdAMTQwMTIwMjE0MjU1NA%3D%3D
https://www.researchgate.net/publication/258067045_Sampling_environmental_acoustic_recordings_to_determine_bird_species_richness?el=1_x_8&enrichId=rgreq-e33c6f25-c19b-45f1-b15b-6a2727f9064d&enrichSource=Y292ZXJQYWdlOzI2MDAyNzg5NTtBUzoxMDE0NjMyOTIzODMyMzdAMTQwMTIwMjE0MjU1NA%3D%3D
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which range from simple clustering techniques such as nearest neighbor (e.g., Fagerlund and Härmä, 

2005) or Euclidean dis- tance between features (e.g., Tyagi et al., 2006), to more complex algo- rithms, 

including Gaussian mixture models (e.g., Marcarini et al., 2008), autonomous neural networks (e.g., 

Cai et al., 2007; Ranjard and Ross, 2008), and support vector machines (e.g., Fagerlund, 2007). The 

third is advanced pattern recognition, which has been used to classify entire bird song sequences, 

using algorithms such as Hidden Markov Models (Kogan and Margoliash, 1998; Somervuo et al., 

2006; Trifa et al., 2008) or techniques such as ensemble processing using distributed pipelines 

(Kasten et al., 2010). Although several classification techniques have been developed for avian 

vocalizations, there is no clear consensus as to which method is most effective. 
Here, we compare the ability of four similarity-based classifiers to 

automatically assign flight calls to the correct warbler species using flight calls recorded from wild 

birds in several locations. We investigate the effectiveness of the following four methodologies for 

calculating call similarity: (1) spectrographic cross-correlation, (2) dynamic time warping, (3) 

Euclidean distance between spectro-temporal measure- ments, and (4) random forest distance 

between spectro-temporal mea- surements. To compare the ability of each method to correctly 

group similar (i.e., conspecific) calls, we apply non-metric multidimensional scaling to the four 

similarity matrices for extraction of latent acoustic measures used in a linear discriminant analysis 

(e.g., Baker and Logue, 2003; Cortopassi and Bradbury, 2000, 2006). Taking advantage of recent 

studies of New World warbler (Parulidae) flight calls (Farnsworth,2007b; Lanzone et al., 2009), 

we use calls from the American Redstart (Setophaga ruticilla), Chestnut-sided Warbler (Setophaga 

pensylvanica), Hooded Warbler (Cardellina citrina), and Ovenbird (Seiurus aurocapillus) to compare the 

methods listed above. These species were selected be- cause they are frequently recorded in North 

American nocturnal acoustic monitoring studies, and because they may be challenging to classify due 

to the structural similarity of their calls, therefore making our study more relevant for real-world 

applications of these classification tech- niques. Lastly, to compare performance between these 

automated tech- niques and manual classification, we contrast the correct classification rates of the 

four automated methods to those of human experts. 

 

2. Materials and methods 
 

2.1. Data collection 
 

Three datasets were used in this study; one to train and test the clas- sification models, and two 

for testing only. The “captive” dataset, which was used to train and test the classifier models, 

contains flight call re- cordings taken from temporarily captured wild birds. The remaining two 

datasets contain calls recorded from wild birds in flight. The “diur- nal” dataset was recorded during 

daylight hours in Northeastern North America, and the “nocturnal” dataset was recorded during 

evening hours (i.e., after civil twilight at dusk) in the Gulf of Mexico. Because the diurnal and 

nocturnal datasets are field recordings, rather than re- cordings made in a controlled 

environment, these recordings have high amounts of wind noise and a much lower signal to 

noise ratio, making them realistic test cases for classification (Lanzone et al., 2009). 

https://www.researchgate.net/publication/228381606_Parametrization_of_inharmonic_bird_sounds_for_automatic_recognition?el=1_x_8&enrichId=rgreq-e33c6f25-c19b-45f1-b15b-6a2727f9064d&enrichSource=Y292ZXJQYWdlOzI2MDAyNzg5NTtBUzoxMDE0NjMyOTIzODMyMzdAMTQwMTIwMjE0MjU1NA%3D%3D
https://www.researchgate.net/publication/228381606_Parametrization_of_inharmonic_bird_sounds_for_automatic_recognition?el=1_x_8&enrichId=rgreq-e33c6f25-c19b-45f1-b15b-6a2727f9064d&enrichSource=Y292ZXJQYWdlOzI2MDAyNzg5NTtBUzoxMDE0NjMyOTIzODMyMzdAMTQwMTIwMjE0MjU1NA%3D%3D
https://www.researchgate.net/publication/224312556_Comparison_of_methods_for_automated_recognition_of_avian_nocturnal_flight_calls?el=1_x_8&enrichId=rgreq-e33c6f25-c19b-45f1-b15b-6a2727f9064d&enrichSource=Y292ZXJQYWdlOzI2MDAyNzg5NTtBUzoxMDE0NjMyOTIzODMyMzdAMTQwMTIwMjE0MjU1NA%3D%3D
https://www.researchgate.net/publication/26620110_Bird_Species_Recognition_Using_Support_Vector_Machines?el=1_x_8&enrichId=rgreq-e33c6f25-c19b-45f1-b15b-6a2727f9064d&enrichSource=Y292ZXJQYWdlOzI2MDAyNzg5NTtBUzoxMDE0NjMyOTIzODMyMzdAMTQwMTIwMjE0MjU1NA%3D%3D
https://www.researchgate.net/publication/5455724_Automated_species_recognition_of_antbirds_in_a_Mexican_rainforest_using_hidden_Markov_models?el=1_x_8&enrichId=rgreq-e33c6f25-c19b-45f1-b15b-6a2727f9064d&enrichSource=Y292ZXJQYWdlOzI2MDAyNzg5NTtBUzoxMDE0NjMyOTIzODMyMzdAMTQwMTIwMjE0MjU1NA%3D%3D
https://www.researchgate.net/publication/5455724_Automated_species_recognition_of_antbirds_in_a_Mexican_rainforest_using_hidden_Markov_models?el=1_x_8&enrichId=rgreq-e33c6f25-c19b-45f1-b15b-6a2727f9064d&enrichSource=Y292ZXJQYWdlOzI2MDAyNzg5NTtBUzoxMDE0NjMyOTIzODMyMzdAMTQwMTIwMjE0MjU1NA%3D%3D
https://www.researchgate.net/publication/222516830_Ensemble_extraction_for_classification_and_detection_of_bird_species?el=1_x_8&enrichId=rgreq-e33c6f25-c19b-45f1-b15b-6a2727f9064d&enrichSource=Y292ZXJQYWdlOzI2MDAyNzg5NTtBUzoxMDE0NjMyOTIzODMyMzdAMTQwMTIwMjE0MjU1NA%3D%3D
https://www.researchgate.net/publication/277493946_Revealing_Undocumented_or_Poorly_Known_Flight_Calls_of_Warblers_(Parulidae)_Using_a_Novel_Method_of_Recording_Birds_in_Captivity?el=1_x_8&enrichId=rgreq-e33c6f25-c19b-45f1-b15b-6a2727f9064d&enrichSource=Y292ZXJQYWdlOzI2MDAyNzg5NTtBUzoxMDE0NjMyOTIzODMyMzdAMTQwMTIwMjE0MjU1NA%3D%3D
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2.1.1. Captive recordings 

The captive flight call dataset was recorded at Powdermill Avian Research Center near 

Pittsburgh, PA during April–May and September– October 2005. Birds were captured using mist 

nets, individuals were banded with a United States Geological Survey band, and the date and time 

of recording, as well as the sex (male, female, unknown) and ap- proximate age (hatching-year, 

after hatching-year) of each individual was recorded. The birds were placed in an enclosed 

recording unit equipped with a microphone, and all vocalization produced by the focal bird were 

recorded (Lanzone et al., 2009). Playbacks of flight calls from conspecifics and heterospecifics, 

which were five minutes in duration, were used to elicit flight calls from non-calling, captive birds. 

The micro- phone was connected to a computer running Raven Pro 1.4 64-bit (Charif et al., 

2004) and recordings were saved as 44,100 kHz, 24-bit WAV files. The birds were released after 

a 10-minute period regardless of the number of calls produced. 

 

2.1.2. Diurnal field recordings 

The diurnal flight call dataset was collected in Pennsylvania and New York in May–July and 

September and October 2005. Calls were recorded from wild individuals during flight in daylight 

hours. Recordings were made using a Sennheiser MKH 70 microphone (Sennheiser Electronic, Old 

Lyme CT), either to an analog recording device (Sony TCM-5000 re- corder) or a digital recording 

device (Nagra Ares BB + flash memory re- corder). All flight calls were either recorded or digitized 

as 16-bit, 22,050 Hz wav files. For analyses, only flight calls recorded with a clear line of sight 

between the microphone and the bird are included. Calls recorded with interfering vegetation or 

structures, or overlap- ping flight calls were excluded (see Farnsworth, 2007b). To avoid collecting 

multiple samples  from the  same  individuals, the captive and diurnal datasets were collected at 

different locations and on dif- ferent days. 

 

2.1.3. Nocturnal field recordings 

The nocturnal flight call dataset was collected from September 8th to November 5th, 1999 on 

the Viosca Knoll oil platform (VK 786), approximately 145 km southeast of the Alabama coast 

(29°1344N; 
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87°4655W), during local civil twilight. A portable pressure zone micro- phone with a Knowles 

Electret EK3132 microphone element was used to record nocturnal vocalizations (see Evans, 

1994, Evans and Mellinger, 1999; Evans and Rosenberg, 2000; Farnsworth et al., 2004; Larkin et 

al., 2002). The microphone element has a relatively flat fre- quency response in the 1–10 kHz 

range. The recordings were made on a videocassette recorder (VCR; Sony SLV-675) in extended 

play mode. The VCR recorded audio from the microphone on 8-h 19-min video home system 

(VHS) tapes through a portable stereo cassette tape deck (Optimus SCT-86; Radio Shack, Fort 

Worth, TX) that amplified input signal strength (gain setting: +7 dB). Recordings were digitized 

at 22,050 Hz, 16-bit sample size (see Farnsworth and Russell, 2007). Species-identity labels for 

the flight calls in the diurnal and nocturnal datasets were established by A. Farnsworth. 

 

 

2.2. Call characteristics 
 

Spectrograms of exemplar flight calls collected from the focal species are shown in Fig. 1. The calls 

of the American Redstart (AMRE) and the Ovenbird (OVEN) (Fig. 1A and D, respectively) both 

exhibit a “check- mark” shape when viewed as a spectrogram and have frequency mod- ulation in the 

tail end of calls, though the AMRE flight call starts with a longer downward slope. The flight calls 

of the Chestnut-sided warbler (CSWA) and Hooded warbler (HOWA) (Fig. 1B and C, respectively) 

have numerous inflections and exhibit high frequency modulation throughout the entire signal. The 

structural characteristics of calls col- lected from each species are summarized in Tables B.2, B.3, 

and B.4. 

2.3. Data extraction 

 
Flight calls were manually clipped from the captive and diurnal re- cordings by using Raven Pro 

1.4 (Charif et al., 2004) to browse recording spectrograms and extract portions of audio files 

containing calls. A 256- sample Fast Fourier Transform (FFT) with 256-sample Hann windows and 

an advance of 38 samples was used to make spectrograms of cap- tive recordings, and a 128-sample 

FFT with 128-sample Hann windows and an advance of one sample was used for diurnal and 

nocturnal re- cordings. For captive recordings, flight calls from focal birds were differ- entiated from 

playback calls by their relatively higher signal-to-noise ratio (SNR). For the nocturnal recordings, 

calls were automatically detected using the Raven Pro. 1.4 Band Limited Energy Detector (Table 

B.1). Selections created by the Band Limited Energy Detector were reviewed by the authors for 

presence of  the  target  species. Raven selection tables containing the selected calls were first 

consoli- dated using Google Refine (Huynh and Mazzocchi, 2012). Next, a buffer of 5 ms was added 

on either side of call selections, and calls were auto- matically clipped from recordings using SoX 

(Sound eXchange v. 14.3.1, http://sox.sourceforge.net/). 

The number of calls collected for each species in the three datasets is shown in Table 1. To create 

our final three datasets, we randomly select- ed 400 calls (100 from each species) from the captive 

recordings, 360 calls (90 from each species) from the diurnal recordings, and 144 calls (36 from 

each species) from the nocturnal recordings, totaling 904 flight calls. The number of calls used in 

each dataset was dictated by the species with the fewest calls. The 400 selected captive calls 

were downsampled to 22,050 Hz, giving the final 904 calls the same sampling 

https://www.researchgate.net/publication/232689264_Flight_calls_of_wood-warblers_are_not_exclusively_associated_with_migratory_behaviors?el=1_x_8&enrichId=rgreq-e33c6f25-c19b-45f1-b15b-6a2727f9064d&enrichSource=Y292ZXJQYWdlOzI2MDAyNzg5NTtBUzoxMDE0NjMyOTIzODMyMzdAMTQwMTIwMjE0MjU1NA%3D%3D
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Fig. 1. Time-frequency spectrogram of typical warbler flight calls. Shown here are the four 

focal species used in this study: (A) American Redstart, (B) Chestnut-sided warbler, (C) 

Hooded warbler, and (D) Ovenbird. 

 

4 S. Keen et al. / Ecological Informatics xxx (2014) xxx–xxx 

 

Table 1 

Summary of flight calls used in this study. This table contains the number of flight calls 

collected from each species and location, the datasets to which collected calls belong, and the 

number of calls used for training and testing of classification models. For the captive calls, we 

collected between 1 and 63 (mean ± SD: 16.35 ± 13.82) calls from each AMRE in- dividual, 1 

and 98 (25.24 ± 24.11) calls from CSWA, 1 and 39 (11.53 ± 10.60) calls from HOWA, and 1 

and 37 (12.31 ± 9.49) calls from OVEN.  
   Ellis (2008), and executed using Matlab, 2010a 
(The Mathworks, 2010). 

 

 

 

Species Dataset Total calls collected Calls used in analysis 

AMRE Captive 790 100 

AMRE Diurnal 266 90 

AMRE Nocturnal 241 36 

CSWA Captive 385 100 

CSWA Diurnal 118 90 

CSWA Nocturnal 66 36 

HOWA Captive 192 100 

HOWA Diurnal 91 90 

HOWA Nocturnal 36 36 
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rate. Spectrograms were then created for each call using a 1024-point FFT with 256-point frame 

length using Hann windows and an advance of one point between frames. This small advance 

between frames re- sulted in a time resolution of 0.045 ms and a frequency resolution of 
21.5 Hz in all call spectrograms. 

 

2.4. Call similarity analyses 
 

2.4.1. Spectrogram cross correlation 

Spectrogram cross-correlation (SPCC) typically measures the simi- larity between pairs of 

spectrograms by calculating similarity as a function of time (Clark et al., 1987; Cortopassi and 

Bradbury, 2000; Farnsworth, 2007b). We used the SPCC-PCO tool (SoundXT; Cortopassi unpublished 

data; used previously in Cortopassi and Bradbury, 2000, 2006) to calculate the peak correlation 

values for all pairs of flight calls across both time and frequency. Although most previous applica- 

tions of SPCC involved correlation along time only, it was necessary for our study to also allow 

sliding along the frequency axis as flight calls may exhibit frequency shifting both within and among 

individuals and species. We used a maximum time lag of 127 ms (the duration of the longest flight 

call in the dataset) and a maximum frequency lag of 3 kHz. The frequency lag was determined 

using visual inspection of call spectrograms, which confirmed that calls did not vary in center fre- 

quency or bandwidth by more than this amount. All spectrogram matrix entries represented power 

in decibel scale (dB/Hz), and spectrogram matrices were normalized to contain values between 0 

and 1, ensuring that peak correlation values would fall within this range. To minimize correlation 

between background noise in pairs of recordings we used only spectrogram values within the 3–10.5 

kHz range, in effect applying a bandpass filter to all call recordings. Frequency shifting, matrix nor- 

malization, and bandlimiting employed here are all built-in features and configuration options of 

the SoundXT tool itself. Applying this tech- nique, we calculated pair-wise peak correlation values 

for all pairwise combinations of flight calls. 

 

2.4.2. Dynamic time warping 

Dynamic time warping (DTW; Vintsyuk, 1968) calculates pairwise similarity between vectors or 

matrices while permitting some expan- sion or compression in time  in order to  maximize  similarity. 

DTW has been most commonly applied in automatic speech recognition (Deller et al., 1993; Rabiner 

et al., 1978; Sakoe and Chiba, 1978), and, more recently, in the detection and classification of avian 

https://www.researchgate.net/publication/230876566_Speech_discrimination_by_dynamic_programming?el=1_x_8&enrichId=rgreq-e33c6f25-c19b-45f1-b15b-6a2727f9064d&enrichSource=Y292ZXJQYWdlOzI2MDAyNzg5NTtBUzoxMDE0NjMyOTIzODMyMzdAMTQwMTIwMjE0MjU1NA%3D%3D
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vocalizations (e.g., Brown et al., 2006; Damoulas et al., 2010; Kogan and Margoliash, 1998). DTW 

effectively stretches or shortens calls in time, allowing for calls with similar contour shapes but 

different durations to be scored 
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2.4.3. Euclidean distance between feature measurements 

Direct call measurement was performed on acoustic features (sum- marized in Table B.5) of all 

flight calls using an adapted version of the Acoustat sound measurement tool (Fristrup and 

Watkins, 1992, 1993). Acoustat measurements were applied to spectrogram values within 

“event” boxes manually created in Raven Pro 1.5 (Charif et al., 2004), which entirely enclosed 

the power within the fundamental frequency of each flight call. The measurement process 

involves collapsing the signal's time-frequency spectrogram into an aggregate power envelope as 

a function of time and an aggregate power spectrum as a function of frequency. From these, robust 

measures of central tendency and disper- sion are extracted using order statistics (Cortopassi, 

2006; Fristrup and Watkins, 1992, 1993, www.birds.cornell.edu/brp/research/algorithms/ 

RSM.html, Cortopassi and Fristrup, personal communication). We cal- culated Euclidean distances 

between the Acoustat energy distribution measurements using the ecodist package (Goslee and 

Urban, 2007) in R (R Core Team, 2013). This method is hereafter referred to as Feature-ED. 

 

2.4.4. Random forest distance between feature measurements 

Using the feature measurements described above, we created a sec- ond set of pairwise 

similarity measurements by applying a random for- est (Breiman, 2001) decision tree to these 

values and calculating the proximity metric between every flight call pair in the dataset. Random 

forests are combinations of decision trees created using a shared feature space, where each tree is 

built on a subsample of the given dataset in a technique called “bagging”. Individual decision trees 

perform classifica- tions based on decisions at nodes within each tree, using logical or arith- metic 

comparisons of a subset of feature measurements which is itself chosen randomly for each node. 

A random forest is typically used in a supervised manner for classification tasks. However, it is 

also possible to use the algorithm in an unsupervised manner producing a measure of similarity 

between data points without considering their class mem- bership (see Liaw and Wiener, 2002). 

We used the randomForest (Liaw and Wiener, 2002) package in R version 3.0.0 (R Core Team, 

2013) to generate a pairwise proximity matrix between the 904 calls in the dataset, based on the 

81 feature measurements. We used 500 trees, with 9 features tried at each node. We converted 

this proximity matrix to a distance matrix using the transformation one minus proximity. This 

method is abbreviated as Feature-RF. 

 

2.5. Creation of similarity-based classifiers 
 

Our aim was to determine which analysis method could provide the best relative similarity 

measurements of calls in our dataset, and thus could best facilitate classification of call recordings 

by species. The anal- yses described above yielded four similarity matrices representing pairwise 

relationships between the 904 calls in the three datasets. To determine which method best 

calculates similarity between call record- ings, we first used non-metric multidimensional 

scaling (NMDS) to model pairwise relationships between calls in 5-dimensional space using 

the ecodist package (Goslee and Urban, 2007) in R (R Core Team, 2013), creating four unique 

NMDS ordinations each computed using five iterations (minimum stress and R2 for each 

ordination: SPCC: 0.107, 0.903; DTW: 0.105, 0.924; Features-ED: 0.001, 0.99; 

http://www.birds.cornell.edu/brp/research/algorithms/
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Features-RF: 0.21, 0.465). Although the four pairwise similarity matrices were created as an 

intermediate step and were ultimately used to train 
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classification models for each method, we illustrate the effectiveness of each similarity analysis to 

cluster calls of the same species by creating 2-D ordination plots showing the distribution of calls in 

NMDS space for each set of similarity measurements (Fig. B.1). 

To classify calls by species, we used the MASS R package (Venables and Ripley, 2002) to create 

linear discriminant analysis (LDA) models for each of the four similarity-based  methods, using the  

captive calls as training data. To evaluate LDA performance, we used 100-fold, leave-one out cross-

validation of the training data, and calculated the percentage of calls correctly classified for each 

method (mean ± sd: SPCC 0.715 ± 0.024, DTW: 0.658 ± 0.024; Features-ED: 0.833 ± 

0.019; Features-RF: 0.888 ± 0.25). After characterizing the perfor- mance of each classifier using 

the training dataset, calls from the diurnal and nocturnal datasets were then classified using the four 

LDA models. By using individuals as output variables and latent measures as input variables, it was 

possible to generate classification rates for correctly identifying calls to known species. A summary 

of the steps involved in each method and the motivation for implementation can be found in Table 

A.1. A flowchart illustrating the order in which  each  method was applied is shown in Fig. A.1. 

 

 

2.6. Performance measures 
 

2.6.1. Comparisons among automated methods 

To determine how well each of the models described above per- formed relative to one another, 

we summarized the classification results from each model in several confusion matrices. By 

comparing the distri- bution of values across confusion matrices we were able to compare the abilities 

of each method to correctly separate species and identify com- mon sources of error. Additionally, 

we calculated the sensitivity and specificity of each LDA model when classifying calls from each 

species. Sensitivity was calculated as the percentage of calls known to be from a certain species that 

were correctly classified as such. Specificity was found by summing all calls that were neither known 

to be from a certain species or predicted to be from that species and dividing that by the total number 

of calls known to be from all other species. These values are reported in the confusion matrices 

created for each model. To eval- uate overall performance of each LDA model, we summed the 

number of correct classifications for each species (the numbers along the di- agonal of the confusion 

matrix), and divided by the total number of calls being classified. The resulting value is referred to 

as the “correct classification rate”, and this measurement  represents  a  common metric for assessing 

the abilities of an LDA to discriminate among species. 

 

 

2.6.2. Expert human reviewers 

To compare performance of the four similarity-based methods to human classification, we 

asked three expert human reviewers to manu- ally classify a random subset of 36 calls per species 

from the three datasets, totaling 432 calls. Each of the expert reviewers has extensive knowledge 

of flight calls and years of experience studying avian vocali- zations, but had not previously seen any 

call in this dataset. The sound files were distributed to the experts without accompanying 

metadata and in random order, ensuring that calls from the same dataset and/or species wouldn't 
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be viewed consecutively, potentially biasing the ex- perts' classification. Using Raven Pro 1.5 

(Charif et al., 2004), the experts visually inspected spectrograms and listened to recordings for 

each flight call in order to classify each call by species to the best of their ability. Spectrogram 

parameters were determined by the personal preference of the experts to optimize their ability 

to accurately clas- sify the flight calls, which is  common practice  amongst  experts. To compare 

human performance to the automated classification methods, we calculated correct classification 

rates for each expert reviewer as well. 



           

 

 

 

                                                    ijaiem.com/Sep 2019/ Volume 8/Issue 1/Article No-1/36-61 

                                                                                                                                           ISSN: 2319-4847  

 

 

3. Results 
 

3.1. Classifier performance 

 
The four automated classification methods performed relatively well when tested on the captive 

dataset, which was also used to train each model (correct classification rate: SPCC: 71.5%; DTW: 

65.75%; Feature- ED: 83.25%; Feature-RF: 88.75%). Despite the relatively high correct 

classification rates of captive calls by the automated techniques, the classification accuracy of 

all techniques dropped significantly when tested on the diurnal and nocturnal datasets (Fig. 2). 

The classification accuracy of three of the automated techniques, SPCC, DTW and Feature-ED, 

decreased when tested on the diurnal dataset (correct clas- sification rates were 55.83%, 52.22%, and 

26.94%, respectively) as well as the nocturnal dataset (correct classification rates were 59.03%, 

54.17%, and 25%). However, the classification accuracy of Feature-RF did not de- crease as severely 

when tested on field recordings; this method had cor- rect classification rates of 67.78% for the 

diurnal dataset and 67.36% for the nocturnal dataset. Whereas Feature-ED had the lowest correct 

clas- sification rates on field recordings, at least 25% lower than SPCC and DTW on both the diurnal 

and nocturnal datasets, Feature-RF performed better than all other automated methods when 

tested on field record- ings, with correct classification rates approximately 10% higher than 

SPCC and DTW (Fig. 2). As expected, the human experts had a high clas- sification accuracy, with 

each person having correct classification rates over 90% for the captive calls, over 92% for diurnal 

calls, and over 88% for nocturnal calls. 

 

3.2. Sources of classification error 

 
Each of the tested methods exhibited some degree of classification error when discriminating 

between calls from CSWA and HOWA, as well as calls from AMRE and OVEN. When tested with 

the field record- ings, SPCC and Feature-RF often misclassified HOWA calls as CSWA calls, and DTW 

often had equal amounts of misclassification between these two species. This is evidenced by the 

relatively low sensitivity scores found for AMRE and HOWA, and low specificity scores found for 

CSWA and, in some cases, OVEN (Tables 2 and 3). Feature-ED classified all HOWA calls as CSWA 

calls in both field datasets, and incorrectly clas- sified nearly all calls as CSWA when tested with the 

nocturnal dataset. SPCC, DTW, and Feature-RF often misclassified AMRE calls as OVEN calls when 

tested with both field datasets, and also misclassified OVEN as AMRE, to a lesser extent (Tables 2 

and 3). Although the human ex- perts had relatively high correct classification rates overall, most 

mis- classification errors arose from confusion between AMRE and OVEN calls, and CSWA and 

HOWA calls (Tables B.6, B.7, and B.8). 

 

4. Discussion 
 

4.1. Challenges inherent to the dataset 
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Despite much interest in the classification of avian vocalizations and evidence that flight calls are 

highly useful in comparative analyses and monitoring migration patterns (e.g., Farnsworth, 

2005), relatively few studies have focused specifically on automated flight call classification (e.g., 

Mills, 1995). Flight calls are extremely short (typically less than 100 ms), and thus sequence-

based classifiers that have been shown to successfully classify song by species are not applicable 

to these signals. Therefore, classifiers that rely upon template matching and feature ex- traction 

are more common in previous studies of flight and contact calls, and have been shown to 

achieve high accuracy rates (Anderson et al., 1996; Bradbury et al., 2001; Damoulas et al., 2010; 

Schrama et al., 2008; Vehrencamp et al., 2003). However, to our knowledge, no previous studies 

have explicitly examined the classification of highly similar flight calls from species that exhibit 

similar spatiotemporal mi- gration phenology (but see Farnsworth and Lovette, 2008), although 

https://www.researchgate.net/publication/238991541_Automatic_detection_and_classification_of_nocturnal_migrant_bird_calls?el=1_x_8&enrichId=rgreq-e33c6f25-c19b-45f1-b15b-6a2727f9064d&enrichSource=Y292ZXJQYWdlOzI2MDAyNzg5NTtBUzoxMDE0NjMyOTIzODMyMzdAMTQwMTIwMjE0MjU1NA%3D%3D
https://www.researchgate.net/publication/227774169_Phylogenetic_and_ecological_effects_on_interspecific_variation_in_structurally_simple_avian_vocalizations?el=1_x_8&enrichId=rgreq-e33c6f25-c19b-45f1-b15b-6a2727f9064d&enrichSource=Y292ZXJQYWdlOzI2MDAyNzg5NTtBUzoxMDE0NjMyOTIzODMyMzdAMTQwMTIwMjE0MjU1NA%3D%3D


           

 

 

 

                                                    ijaiem.com/Sep 2019/ Volume 8/Issue 1/Article No-1/36-61 

                                                                                                                                           ISSN: 2319-4847  

 

 

6 S. Keen et al. / Ecological Informatics xxx (2014) xxx–xxx 

 
 

Fig. 2. Percentage of flight calls correctly classified by human experts and automated methods. The correct 

classification rates are shown for the three datasets used in this study: captive recordings, diurnal recordings, 

and nocturnal recordings. Human experts classified 144 flight calls from each dataset, and automated methods 

were used to classify 400 captive calls, 360 diurnal calls, and 144 nocturnal calls. The automated methods were 

trained using the captive call recordings, thus leave-one-out cross validation was used to obtain classification 

results for this dataset. 

 

 

this is an increasingly important challenge for biologists studying inter- specific migration patterns. 

The low correct classification rates observed in our study, ranging from 25 to 68% in field recordings, can partially be 

attributed to our de- liberate choice of some species that are similar to one another and the use of field recordings as test 

data. Previous studies have often tested classification techniques only on captive recordings, or those taken at 

extremely close range. Here, we intentionally included calls recorded under typical field conditions to more accurately 

test methods that are commonly used on data characteristic of passive acoustic monitoring 

 

 

 

 

Results of classification of diurnal flight calls. Field recordings of flight calls collected during daylight hours were 

classified by models based on (A) SPCC, (B) DTW, (C) Feature-ED, and 

(D) Feature-RF. The models were tested on a dataset of 360 calls, comprising 90 from each focal species. 

 

 

 

 

 

 

 

 

 



           

 

 

 

                                                    ijaiem.com/Sep 2019/ Volume 8/Issue 1/Article No-1/36-61 

                                                                                                                                           ISSN: 2319-4847  

 

 

 

 

 

 

Observed Predicted Predicted Predicted Predicted Sensitivity 

 AMRE CSWA HOWA OVEN  

A      

AMRE 19 7 6 58 0.21 

CSWA 0 80 10 0 0.89 

HOWA 4 62 24 0 0.27 
OVEN 3 9 0 78 0.87 

Specificity 0.97 0.72 0.94 0.79  

B      

AMRE 14 2 8 66 0.16 

CSWA 0 48 42 0 0.53 

HOWA 0 47 42 1 0.47 
OVEN 0 0 6 84 0.93 

Specificity 1.00 0.82 0.79 0.75  

C      

AMRE 24 65 1 0 0.27 

CSWA 17 73 0 0 0.81 

HOWA 30 60 0 0 0.00 
OVEN 43 45 2 0 0.00 

Specificity 0.67 0.37 0.99 1.00  

D      

AMRE 33 2 8 47 0.37 

CSWA 4 73 11 2 0.81 

HOWA 1 19 70 0 0.78 
OVEN 5 0 3 82 0.91 

Specificity 0.96 0.92 0.92 0.82  
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projects. The diurnal and nocturnal datasets exhibit high noise levels due to wind and other ambient 

noise, making “clean” signal analysis impossible. Thus, despite relatively poor performance of 

automated methods in field conditions, the use of field recorded datasets in this study enhances the 

relevance of our results for real-world applications. 

 

4.2. Evaluation of classification techniques 

 
Each of the tested methods has drawbacks or limitations, particular- ly when applied to field recordings. 

SPCC and DTW are both computa- tionally expensive and are susceptible to classification error due to 

matching background noise in spectrograms rather than the signal of in- terest, a common shortcoming of 

template matching algorithms. For our field recordings, we recognize and accept this as an integral source 

of error in such data. SPCC and DTW are also much more computationally expensive, and without the use of 

a kernel (e.g., Damoulas et al., 2010), they may be impractical to implement. Both feature-based techniques 

are computationally inexpensive, but are ultimately limited by the qual- ity of features used; a universal 

challenge in classification of acoustic data. The distance metric used to measure similarity between 

record- ings of calls can also have a large impact on correct classification rates, as shown in Fig. 2. We suspect 

that using Euclidean distance to estimate call similarity was less effective, as background noise may have 

resulted in highly inaccurate feature measurements and may have introduced errors into distance 

calculations. The Feature-RF method is likely more resilient to background noise because pairwise distance 

is not a function of the difference of pairs of feature measurements, but instead the distance between 

decision trees. With additional features that are less affected by background noise, it may be possible to 

improve per- formance of both feature-based methods. Other feature sets have been developed for the 

purpose of classifying avian vocalizations (e.g., Tchernichovski et al., 2000), and it would be interesting 

to test classification based on these. 

 

4.3. Similarity among flight call structures 
 

The common classification errors among all models were confusion between AMRE and OVEN calls, and 

between CSWA and HOWA calls. Confusion between these species occurred in human classification as well, 

though to a lesser extent (Tables B.6–B.8). AMRE and OVEN flight 

https://www.researchgate.net/publication/221226357_Bayesian_Classification_of_Flight_Calls_with_a_Novel_Dynamic_Time_Warping_Kernel?el=1_x_8&enrichId=rgreq-e33c6f25-c19b-45f1-b15b-6a2727f9064d&enrichSource=Y292ZXJQYWdlOzI2MDAyNzg5NTtBUzoxMDE0NjMyOTIzODMyMzdAMTQwMTIwMjE0MjU1NA%3D%3D
https://www.researchgate.net/publication/12440871_A_procedure_for_an_automated_measurement_of_similarity?el=1_x_8&enrichId=rgreq-e33c6f25-c19b-45f1-b15b-6a2727f9064d&enrichSource=Y292ZXJQYWdlOzI2MDAyNzg5NTtBUzoxMDE0NjMyOTIzODMyMzdAMTQwMTIwMjE0MjU1NA%3D%3D
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Table 3 

Results of classification of nocturnal flight calls. Field recordings of flight calls collected during nighttime hours 

were classified by models based on (A) SPCC, (B) DTW, 

(C) Feature-ED, and (D) Feature-RF. The models were tested on a dataset of 144 calls, com- prising 36 from 

each focal species. 

 

Observ

ed 

Predict

ed 

Predict

ed 

Predict

ed 

Predict

ed 

Sensiti

vity 

 AMRE CSWA HOWA OVEN  

A      

AMRE 17 2 3 14 0.47 

CSWA 0 31 0 5 0.86 

HOWA 4 24 7 1 0.19 
OVEN 1 5 0 30 0.86 

Specifi

city 

0.95 0.71 0.97 0.81  

B      

AMRE 7 6 7 16 0.19 

CSWA 0 25 7 4 0.69 

HOWA 0 7 28 1 0.78 
OVEN 0 4 14 18 0.50 

Specifi

city 

1.00 0.84 0.73 0.81  

C      

AMRE 0 36 0 0 0.00 

CSWA 0 36 0 0 1.00 

HOWA 1 35 0 0 0.00 
OVEN 0 36 0 0 0.00 

Specifi

city 

0.99 0.01 1.00 1.00  

D      

AMRE 24 1 3 8 0.67 

CSWA 3 24 3 6 0.67 

HOWA 0 15 19 2 0.53 
OVEN 6 0 0 30 0.83 

Specifi

city 

0.92 0.85 0.94 0.85  

 

 

calls resemble a “check-mark” (Fig. 1A and D), but can be distinguished most often by the longer downsweep at the 

beginning of AMRE calls, the overall longer duration of AMRE calls, and the higher level of mod- ulation in the second 

half of OVEN calls (Evans and O'Brien, 2002). 
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However, we observed high variation in call structure found both within and among individuals in each species in our 

dataset, and certain call variants can appear more similar to those of heterospecifics than con- specifics, as shown in 

Fig. 3. CSWA flight calls (Fig. 1B) and HOWA flight calls (Fig. 1C) both have high frequency modulation, though the 

CSWA call is longer and maintains a constant average frequency over time, whereas HOWA calls have a “swooping” 

quality (Evans and O'Brien, 2002), with fluctuating rates of modulation and increasing or decreas- ing average 

frequency. Within-individual and within-species variation play a large role in confusion between these species as well 

(Fig. 3). Fur- thermore, when calls are somewhat masked by background noise, even calls with relatively different 

spectral structure may become indistin- guishable, which appears to be the primary cause of misclassification of 

field recordings. 

 

 

4.4. Comparison to previous studies 

 
Of the four similarity-based methods, the Feature-RF proved to be the most accurate when classifying 

calls from each of the three datasets. Other bioacoustics studies have had similar success using random for- 

ests in the classification of bird calls (Briggs et al., 2009), as well as calls of bats (Armitage and Ober, 

2010) and cetaceans (Barkely et al., 2011; Henderson et al., 2011). Briggs et al. (2009) showed that a 100- 

tree random forest had a classification accuracy of up to 48.6%, compa- rable with adaboost and support 

vector machines, when classifying calls from 20 bird species found in the western United States. 

Armitage and Ober (2010) obtained correct classification rates of 84– 96% when classifying calls from 11 

different bats species using a random forest with 1000 trees. Taking feature measurements from eight species 

of delphinids, Barkely et al. (2011) had an overall correct classification score of 65.0% using a 500 tree 

random forest design. Using a random forest model with 5000 trees, Henderson et al. (2011) had a correct 

clas- sification rate of 64.8% for two types of whale vocalizations. 
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Fig. 3. Heterospecific flight calls that exhibit similar call shape and structure. Flight calls collected 

from the (A) American Redstart and (B) Ovenbird often exhibit similar “check mark” structures with 

fundamental frequencies between 7 and 9 kHz and durations of approximately 70 ms. 
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4.5. Recommendations 

 
Based on our results and those mentioned above, we recommend using feature-based random forest 

classification, as both feature extrac- tion and computation of random forest distance are fast and compu- 

tationally inexpensive. To illustrate the ability of the Feature-RF methods to group calls within species, a 

two-dimensional NMDS or- dination plot of captive calls is shown in Fig. B.1. Although only an 

unsupervised random forest model is appropriate for this study, as it permits direct comparisons to the 

three other similarity-based methods, we also investigated the use of a supervised random forest model. In 

a supervised random forest, trees are constructed with knowledge of the class of each sample. The supervised 

random forest resulted in an overall accuracy rate of 96.25% on the captive record- ings, 76.67% on the 

diurnal recordings, and 75.69% on the nocturnal recordings. These results are not directly comparable to the 

other techniques tested here, but we recommend that this method be fur- ther explored in future studies. 

Additionally, we recommend the ex- ploration of the option to have an additional class to which calls may 

be assigned if they are not well suited to any existing classes, as might arise when working with  “real  

world” datasets.  Presently, the classifiers presented here cannot assign calls that do not belong to any class 

to an unknown category, though there is value in adding this option. 
Though there is still much unknown about the extent of variation in 

flight calls, and best practices for applying the few similarity-based clas- sification methods practical for analysis 

of field recordings are unclear, the different techniques presented here offer insight into potential solu- tions 

for this challenging problem. If there is any hope of using acoustic monitoring of flight calls in real-time or 

near-real-time applications, classifications methods that take advantage of feature sets similar to the one 

used here will be key. Knowing that feature-based methods, rather than template-based methods, are more 

appropriate for flight call classification, sets the stage for others to apply more advanced clas- sification 

techniques, such as support vector machines or artificial neu- ral networks, to these challenging signals. 
 

5. Conclusions 
 

We provide strong evidence that similarity-based approaches have great potential 

for correct species-level classifications of four species of wood-warblers. Although 

human reviewers are still substantially bet- ter at classification of these signals, human 

classification is impractical even at the present-day scales of analysis, as tens of 

thousands of flight calls can be recorded from a single monitoring station in a single 

migration season. We recommend a continuing line of research using feature-based 

classification and the random forest distance metric. For the present, we recommend 

a combination of human review and unsu- pervised random forest methods for the 

most efficient and accurate analysis of flight call signals. In future work, assigning 

labels to flight calls automatically could permit human reviewers to continue to over- 

see classification while greatly improving efficiency and allowing more tedious, 

low-level classification to be performed by detection– classification algorithms. 

The need for automation in acoustic monitoring is critical at multiple steps. The 

methods that we compared provide a solid foundation for au- tomating the 

classification process and for future research on additional feature sets needed to 
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improve classification. Recent work on automatic detection is part of the solution to 

improving efficiency (Ross and Allen, in press).  
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