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ABSTRACT

Researchers may now study environmental and biological processes at high sampling rates and sizes never before possible using
networked embedded acoustic sensors and imagers. Because of the sheer size of the data sets generated by this kind of sampling,
automated processing is usually necessary for any meaningful analysis. But instead of seeing it as an impersonal machine, scientists
should actively participate in the processing—a method we term "interactive environmental sensing"—to ensure the data is accurate.
In this study, we outline the difficulties of this method and provide many instances from the fields of bioacoustics, plant phenology,
and bird biology to illustrate our points.
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INTRODUCTION

One of the primary drivers of embedded systems research is environmental sensing. Researchers may now examine
phenomena on a scale that was previously unimaginable, all thanks to the networked embedded devices' capacity to
boost sample density and coverage [1]. While acoustic sensors and imagers are invaluable for recording biological
events, they also have the ability to generate massive amounts of data rapidly via the use of high frequency sampling.
While these sensors have the potential to greatly enhance observational capabilities, they also make manual processing
a thing of the past. Reducing huge data sets automatically is sometimes the only option for analysis.
Researchers need trust in the sensors' dependability and data quality to use embedded networked sensing to address
scientific inquiries. On a more advanced level, trust in the precision of automated detectors and classifiers used to
compress massive datasets is also necessary. Environmental scientists may be studying ecological phenomena that are
either not well-defined or too complicated to automati- cally classify a priori, necessitating repetition, even though
automation is desired in well-characterized systems.When it comes to interactive environmental sensing, the scientist
is seen as an integral component of the data reduction process. They are also able to intervene when unusual or
unexpected data is detected. One benefit of this strategy is that it gives scientists confidence in the accuracy of the
automated data reduction and analysis tools, and another is that it ensures the data collected is of the anticipated quality.
This study explains why interactive environmental sensing is important and how it presents problems in signal
processing. We cover the two branches of signal processing—acoustic and image processing—using three case studies
to illustrate the applications and difficulties. Bioacoustics, plant phe-nology, and bird biology are the sources from
which we take examples. We start by outlining the most common issues with these kinds of interactive sensing
applications, and then we go on to talk about what's to come.

1.ACOUSTIC ARRAY

In bioacoustics research, being able to detect, classify and lo- calize animal and bird vocalizations is an important
part of understanding behavior. Traditional approaches involve ei- ther manual observation in the field by the
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scientist, or de- ploying a wired array of microphones over the area of interest to record data for offline analysis.

We have developed two generations of wireless acoustic monitoring boxes, designed for rapid, attended
deployment and in-field processing [2]. These platforms feature a four- microphone sub-array, arranged in a
tetrahedral configuration, enabling the use of techniques requiring highly coherent sig- nals (such as beam forming)
per-node. A network of acoustic boxes can time synchronize and self-localize to high accu- racy using acoustic time
of flight and direction of arrival tech- niques [2]. Being able to process vocalizations on-line allows the scientist to
get an idea of the quality of the data that is being gathered, as well as enabling reconfiguration, to react to unforeseen
events such as phenomena moving out of the area covered by the network. These types of interaction are not
possible by analyzing an off-line data set.
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Fig. 1. Example of the detection of an event of interest against the estimated noise floor.

1.1. Event Detection

An approach is taken using an on-line event detector to dis- criminate events of interest in a continuous
stream of audio based on energy in specific frequency bands. The detector as- sumes a Gaussian ambient
noise model, adaptively estimating the noise floor using two Exponentially Weighted Moving Av- erage
(EWMA) filters for mean and variance. Field tests have shown good performance and suitability for on-line
event de- tection of the vocalization of marmots [3].

The event detector is optimized by processing one channel of audio, decimating to 24KHz and processing
only 1/4 of the samples taken (a typical marmot vocalization has a length of 0.04 seconds). The energy of
the samples is determined in the frequency domain, taking the magnitude of the sum of pre-determined
frequency bins of interest. This energy feeds in to the detector, and depending on its value is determined to
be either noise or an event of interest. Figure 1 shows an example of a detection in the band of interest
compared to the estimated noise floor.

This type of detector is ideal to run on-line on an em- bedded platform, and is immediately applicable to
different species vocalizations, by tuning specific noise threshold and frequency interest parameters. These
pre-determined charac- teristics would be observed by the scientist in the field, and used to adjust the
detector.

1.2. Localization

Localizing an event of interest over a distributed network of acoustic boxes is a multi-step process of sub-
array processing, event clustering and fusion. Thanks to the close microphone proximity on each sub-array,
the Approximated Maximum Likelihood algorithm [3] can be utilized, which estimates the likelihood of
direction of arrival (DoA) at each possible de- gree (or higher). This approach presents a trade-off between
sub-array size and spatial aliasing which is comparable to the Nyquist limit; energy in wavelength
frequencies lower than
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two times the microphone spacing will be aliased (see [3] for a detailed discussion).

Based on detection time, events must be clustered together such that they represent the same animal
vocalization, and then suitably combined to form an overall estimate. This can be naively done by creating
a likelihood map, where each point on the map represents the combination of the direction of arrival
likelihoods of all nodes that detected the event [3].

2. PLANT PHENOLOGY

In plant phenology, yearly patterns in timing of bud burst, flower bloom and the numbers and sizes of
leaves are impor- tant indicators of environmental conditions. Plant phenology has been identified as a
crucial contributor to global change research [4]. Asynchrony of phenological events may disrupt plant
and animal communities and be a signal of significant environmental change [5].

Collecting phenological data manually is time-consuming and labor-intensive and thus much basic
ground-based phe- nological information is lacking [6]. The use of actuated im- agers as biological sensors
is therefore ideal for wider pheno- logical studies, allowing a higher frequency of observations, especially
over large areas; Imagers can also be left in remote locations which are troublesome for the scientist to
repeatedly access.

2.1. Leaf and Flower Detection

At James Reserve (Idyllwild, CA), high-resolution, pan, tilt, zoom (PTZ) controlled cameras mounted on
fixed towers make daily scans of their surroundings, aiming to capture plant phe- nological events
(gathering about 1,200 images/day). The cameras must be zoomed in closely when scanning, due to the
small size of some of the plants/flowers. Manually inspecting the resulting image streams for changes in
leaves or flowers is an unreasonable task, so automated detection is desirable. Unfortunately while it may
be easy to detect the presence of a well-developed flower using color characteristics, some flow- ers and
leaves have weaker color characteristics and can be mostly missed by automated detectors.

The goal is to reduce the images in the data stream to only those which are candidates for containing
phenologi- cal events. The scientist can then visually verify whether a flower is present in the candidate
image, for instance. After this, the scientist can inspect images captured on previous or subsequent days
at the same PTZ coordinates to find the exact timing of important events, such as bud burst or senescence.

Flowers and leaves being monitored vary in size, shape and color which affect how easy they are to
detect. This is compounded by changes in lighting conditions from day to day. The easiest types of plant
phenological events to au- tomatically detect are the presence of numerous (or large), leaves or flowers
that are in high contrast to the background.
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Fig. 2. Manual vs automated counting of blooming wall flower, Erysimum capitatum. The automated
prediction of blooming events closely matches the manually counted one.

In these cases, using the Hue, Saturation, Lightness (HSL) color space is preferable to RGB (in which all
three compo- nents change as light levels change). Hue represents a con- tinuous variable for measuring
color that is independent of lightness and saturation - thus, if the ambient light changes, hue will not change
and the salient feature will still be de- tected.

2.2. Tools for Interaction

To provide the interaction with the data set that the scientist requires, a visualization tool has been
implemented. The tool is a color filter applied to selected images. By setting the min/max values of
individual color components, the tool pro- vides a quick way to mask areas of an image. After a filter has
been optimized, it can then be applied automatically to the entire image set, producing a reduced set of
filtered im- ages.

Other integrated tools are used to help improve contrast and reduce noise in the image (constrast
stretching, histogram equalization, Gaussian blur). A rough flower counter has also been implemented (see
Figure 2). For data quality assurance, the scientist can easily tag images, allowing the performance of the
automated system to be measured against a ground truth.

3. AVIAN BIOLOGY

Avian biologists investigate trends and differences in behavior that affect reproductive success (and the
effects of microcli- mate variability on this). Traditionally, avian biologists man- ually inspect nesting
locations and visually log data about the state of the nest. The number of observations is increased by
deploying imaging sensors (sampling every 15 minutes) in nest boxes over a given area. The avian biologist
can then interactively use tools for nest box processing to target visual investigation of potentially anomalous
or unforseen events.

Fig. 3. An indication of the adaptation of the threshold indi- cating bird presence/absence, based on corner
counting.

3.1. Processing Goals and Challenges

The aim in processing the stream of images gathered at a nest box is to determine a bird’s presence and
absence, count num- ber of eggs, and determine the precise timings of transitions among stages of the
nesting cyle. The scientist is also in- terested in observing hatching, feeding and parental care be- haviour.

Using imagers in fixed positions in the nest box is advan- tageous because the size of eggs can be
characterized, and the area covered by the camera’s field of view is constant. Also, because the image
stream represents the nest over a time pe- riod, each image does not have to be processed as if it were not
unrelated to the others.

However, nest box images can be influenced by variable lighting quality depending on night and day.
Therefore, each nest box is lit using Infrared (IR), providing a consistent (non- disturbing) lighting source
- this requires that all images cap- tured must be grayscale. Sensor placement and sensor sen- sitivity affect
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the similarity of images across different boxes, and different species may build nests in different ways.
This can limit the general applicability of any image processing techniques applied.

3.2. Bird and Egg Detection Techniques

Even though the data stream is temporal in nature, a simple approach (such as frame differencing) will not
work given the relatively low sampling rate. Instead, birds are detected by taking advantage of interest
points. In this case, corners (ar- eas in the image where gradients are large in two directions) are used as
interest points. These points can be found using a Harris-Stephens detector [7]. Since a bird’s feathers
have a smooth, approximately homogenous appearance, they will have a lower density of interest points
than a more textured re- gion, such as the nest. Bird presence can then be determined by taking the midpoint
between minimum and maximum in- terest points over a four day window of images (around 200). This
midpoint will change adaptively, and is used to decide

whether a bird is present or not, as shown in Figure 3.

For images which have been determined not to contain birds, eggs are counted. This problem is
approached not by trying to count the number of eggs in a single image (which can be difficult, even for a
human), but by counting the num- ber of eggs in the nest box over time. Each image is searched for blobs
of interest, using a Scale Invariant Feature Trans- form (SIFT) detector [8]. Blobs are areas exhibiting
maximal response to a Laplacian of Gaussian filter (LoG); the output of the SIFT detector gives a scale for
the blob region. The mean and variance of intensity around this location is found to be characteristic of
eggs and are used to discriminate between eggs and other egg-like objects. Using this output as input to a
Hidden Markov Model (HMM) leverages the temporal constraints of the image stream, and accounts for
the under- lying statistic of occluded eggs and the existence of egg-like objects, to deduce a final egg count
and transition in nesting stages.

CONCLUSION

In this paper, we have described interactive environmental monitoring and the signal processing challenges
it brings. In each of our examples there is the theme of automated event detection in a signal stream, be it
image or acoustic. It is clear that in well-characterized problems, event detectors are read- ily automated.
However, many of the challenges we see in environmental monitoring require iteration and human inter-
action to be adequately flexible.

The creation of suitable classification algorithms to dis- criminate the unique vocal signatures of not
only species, but individuals in a species is highly desirable. Coupling auto- mated event detection and
localization with classifiers that can run on-line and in the field will undoubtedly assist bioa- coustics
research and enable new research questions to be posed in the future.In plant phenology, distinguishing the
leaves of different species using an imager in a stand of mixed trees has so far not been possible. Additionally,
small annual and perennial wild- flowers are particularly difficult to detect using color alone and thus other,
more sophisticated image processing tools, such as template matching or SIFT, may hold promise.

It has been observed that different techniques work bet- ter at different stages of the avian cycle.
Therefore, enabling a level of adaptation where the image processing tools could autonomously infer the
stage of the cycle and then adapt their processing would be highly desirable. Having the scientist train the
system to detect change points, after which the sys- tem could respond to its own context classification, is a
promis- ing approach.

Whilst automated systems to perform context-aware pro- cessing of data from biological sensors are the
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desirable end goal, the scientist is likely to be in the loop for the foresee- able future. Thus, interactive
environmental sensing will stillbe required and will necessitate concurrent technological ad- vances in data
browsing, data processing, and visualization tools.As automation of the current challenges we see in interac-
tive environmental sensing become more feasible, challenges will occur in accuracy improvement, self-
adaptation, context- aware processing and self-configuration.
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