

A Real-Time System for Tracking Air Pollution and Quality

Swapna, California, UK, swapna0983@gmail.com

Article Info

Received: 17-09-2016

Revised: 21-10-2016

Accepted: 06-11-2016

Published: 15/12/2016

Abstract: Air pollution has recently emerged as a major global issue. A variety of factors, both natural and artificial, contribute to air pollution. The health of humans is greatly impacted by air pollutants, which include atmospheric components such as carbon monoxide (CO), sulfur dioxide (SO₂), nitrogen dioxide (NO₂), ozone (O₃), respirable suspended particulate matter (RSPM), and volatile organic compounds (VOCs). It is affecting the majority of developed-world and developing-world large cities. Consequently, it is crucial to establish a system for monitoring air pollution and quality in real-time. Our team has created an air pollution detector using an Arduino microcontroller and a tiny, inexpensive sensor. Benefits of the detector include dependable stability, quick reaction recovery, and characteristics that prolong its life. This gear is perfect for mobile measurement and easy to understand data collecting; it is inexpensive, user-friendly, low-cost, and requires little power. It comes with processing software that can examine data with great accuracy and quality. Practical tool with potential for business use.

Keywords- Air pollution, arduino, gas sensor, anthropogenic, atmosphere.

INTRODUCTION

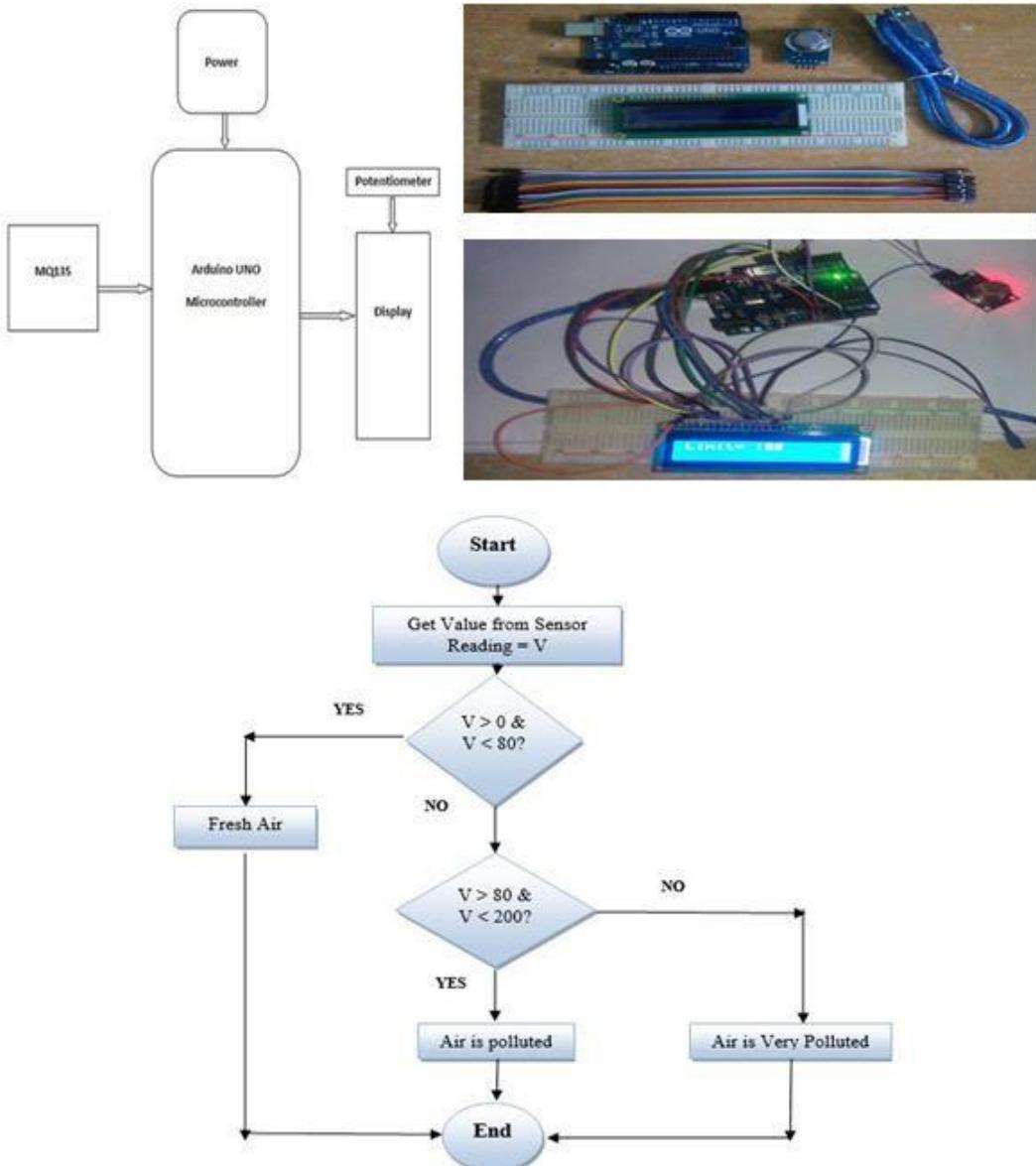
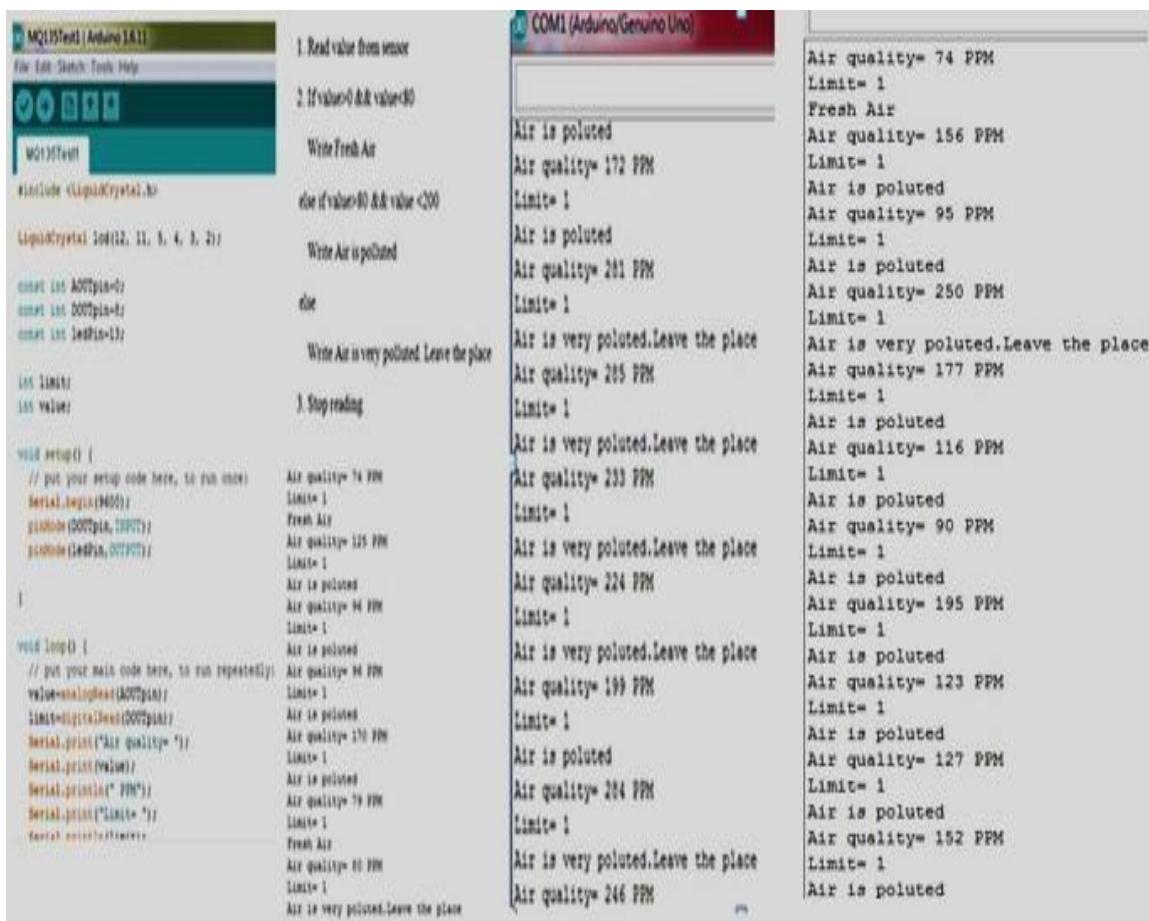

When particles, biological molecules, or other potentially dangerous substances are released into Earth's atmosphere in excess, this is known as air pollution. It is a leading cause of allergic reactions, infections, and even death for some individuals. Animals, crops used for human consumption, and the natural and man-made environments are all negatively impacted [1-2]. Additionally, prolonged exposure to these chemicals or pollutants without protection may cause a variety of cancers in humans, as well as respiratory diseases (like asthma). Carbon monoxide (CO), for instance, is notoriously toxic to humans; prolonged exposure may induce fatal asphyxiation, headaches caused by carboxy-hemoglobin, and other symptoms. In 2014, around 7 million individuals lost their lives due to air pollution, according to the World Health Organization (WHO). The International Energy Agency (IEA) also came at a similar approximation, closely matching it [3]. Many environmental disasters, such as acid rain and ozone depletion, are also caused by these compounds or pollutants. The air we breathe is becoming more polluted due to a variety of human activities, thus finding effective ways to reduce this problem is crucial [4]. Historically, air quality measurement sensors were bulky, immobile, and costly. Currently, the majority of air pollution sensors focus on the five most prevalent air pollutants: particulate matter, sulfur dioxide, ozone, carbon monoxide, and nitrous oxide. The modern world has made air pollution and quality monitoring very important due to the significant impact it has on human health. Localized instances of air pollution may be detected and tracked by the newly-designed air-quality measuring sensor. It is versatile enough to be used inside and out. In the future, thanks to technology advancements, these sensors will be more widely available, affordable, portable, and able to monitor local air quality via wearable devices [5-7].

Fig 1: Parts of the air quality monitor system.

I. WORKING PRINCIPLE OF THE SYSTEM

The gas sensing analyzer MQ135 and the system's main chip, the LM393, are both mentioned in references 8, 9, and 10. An up-to-date microcontroller board based on the ATmega328P is the Arduino, also known as Genuino Uno. A USB cable or power source is all that's needed to connect it to a computer. Ready to go when hooked up to a battery supply or an AC-to-DC converter [10, 11]. The MQ135 gas sensor device is connected to the Arduino Uno board via jumper wires. When connected to the Arduino board, the sensor's digital pin should be connected to digital 8 and the analog pin to digital 0. Additionally, the sensor's +5V and GND (ground) pins should be connected to the 5V Vcc and GND (ground) pins on the Arduino board, respectively. Next, a computer system is connected to the arduino Uno board with a USB connection. Detailed below are the detector's structural design, as well as its hardware and software components.

A harmful gas recognition device for the people, the environment that is appropriate for. A wide variety of gases is detected in air quality sensor comprising NH₃, NO₂, benzene, alcohol, smoke, and CO₂. The collection of air pollutants like CO₂, CO, SO₂, etc. is greatly location- dependent [3, 6, 9, 12]. Very simple device, and monitoring circuit which is perfect for use in office or factory.


SOFTWARE

We have also developed a customized software for gathering data from the detector and mapping it in real- time [10, 13]. The software of arduino-based air pollution detector system comprises the coding of the arduino Uno board in its integrated development Environment (Arduino IDE). The serial connection between the sensor, the arduino, and the computer system that was formed using the serial library of the arduino. The attention of the gas measured hinge on upon the resistance of the gas sensor. Additionally, this depends on the sensor of the voltage of the analog output pin. The sensor revisits an analog voltage to the arduino [11, 14 -15].

II. DATA FROM THE DETECTOR AND CODE

To obtain real time air pollution data (in PPM), we have taken reading using our customized sensor-detector in different environmental pollutions. We have used cigarette smoke, mosquito coil burning smoke, motor vehicle smoke from street etc.

Arduino-Based Real Time Air Quality and Pollution Monitoring System

The image shows the Arduino IDE interface with two main sections: the code editor and the serial monitor.

Code Editor (MQ135Test.ino):

```
MQ135Test | Arduino [411]
File Edit Sketch Tools Help
MQ135Test
#include <LiquidCrystal.h>
LiquidCrystal lcd(12, 11, 9, 8, 7, 6);
const int A0Pin=0;
const int D0Pin=4;
const int ledPin=13;
int limit;
int value;
void setup() {
  // put your setup code here, to run once
  Serial.begin(9600);
  pinMode(D0Pin, INPUT);
  pinMode(ledPin, OUTPUT);
}
void loop() {
  // put your main code here, to run repeatedly
  value=digitalRead(A0Pin);
  limit=digitalRead(D0Pin);
  Serial.print("Air quality= ");
  Serial.print(value);
  Serial.print(" D0Pin");
  Serial.print(" Limit= ");
  Serial.print(limit);
  Serial.print(" Air quality= ");
  if (value && value < 200) {
    Write Fresh Air
    Air quality= 172 PPM
    Limit= 1
    Air is poluted
    Air quality= 156 PPM
    Limit= 1
  } else if (value > 200 && value < 300) {
    Write Air is poluted
    Air quality= 201 PPM
    Limit= 1
    Air is poluted
    Air quality= 95 PPM
    Limit= 1
  } else {
    Write Air is very poluted. Leave the place
    Air quality= 205 PPM
    Limit= 1
    Air is very poluted. Leave the place
    Air quality= 177 PPM
    Limit= 1
  }
  if (limit && limit < 1) {
    Air quality= 116 PPM
    Limit= 1
    Air is poluted
    Air quality= 195 PPM
    Limit= 1
  } else if (limit > 1) {
    Air quality= 123 PPM
    Limit= 1
    Air is poluted
    Air quality= 127 PPM
    Limit= 1
  }
  if (value && value < 10) {
    Air quality= 152 PPM
    Limit= 1
    Air is poluted
  }
}
```

Serial Monitor (COM1 (Arduino/Genuino Uno)):

Air quality	Limit	Condition	Air quality	Limit	Condition
74 PPM	1	Fresh Air	156 PPM	1	Air is poluted
172 PPM	1	Air is poluted	95 PPM	1	Air is poluted
201 PPM	1	Air is poluted	250 PPM	1	Air is poluted
205 PPM	1	Air is very poluted. Leave the place	177 PPM	1	Air is very poluted. Leave the place
116 PPM	1	Air is poluted	195 PPM	1	Air is poluted
233 PPM	1	Air quality= 233 PPM	123 PPM	1	Air quality= 123 PPM
125 PPM	1	Air is very poluted. Leave the place	199 PPM	1	Air quality= 199 PPM
224 PPM	1	Air quality= 224 PPM	127 PPM	1	Air quality= 127 PPM
19 PPM	1	Air quality= 19 PPM	152 PPM	1	Air is poluted
199 PPM	1	Air is very poluted. Leave the place	10 PPM	1	Air quality= 10 PPM
170 PPM	1	Air quality= 170 PPM	246 PPM	1	Air is very poluted. Leave the place
19 PPM	1	Air is poluted	156 PPM	1	Air is poluted
204 PPM	1	Air quality= 204 PPM	127 PPM	1	Air quality= 127 PPM
19 PPM	1	Air quality= 19 PPM	152 PPM	1	Air is poluted
152 PPM	1	Air quality= 152 PPM	10 PPM	1	Air quality= 10 PPM
246 PPM	1	Air is very poluted. Leave the place	156 PPM	1	Air is poluted

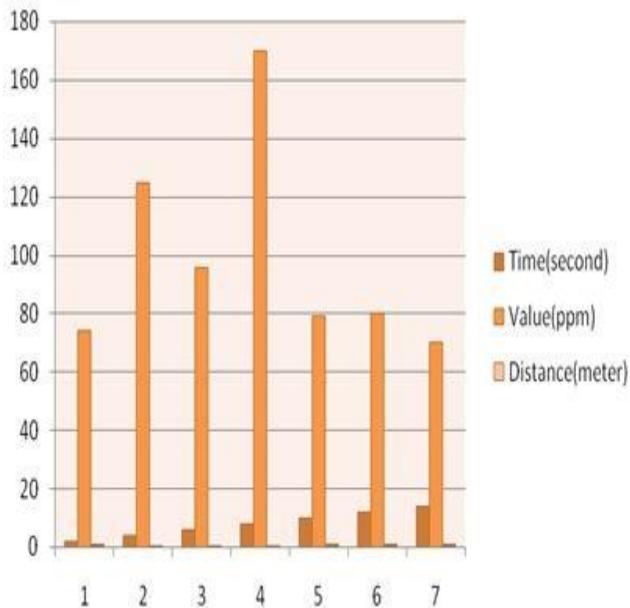

```
Air is poluted
Air quality= 72 PPM
Limit= 1
Fresh Air
Air quality= 124 PPM
Limit= 1
Air is poluted
Air quality= 80 PPM
Limit= 1
Air is very poluted. Leave the place
Air quality= 86 PPM
Limit= 1
Air is poluted
Air quality= 118 PPM
Limit= 1
Air is poluted
Air quality= 75 PPM
Limit= 1
Fresh Air
Air quality= 96 PPM
Limit= 1
```

Fig 3: Arduino editor and coding Output Result for mosquito coil, motorcycle smoke and two types of cigarettes
Marlboro and Hollywood

III. RESULTS AND DISCUSSIONS

Arduino based air quality monitoring detector system design involves hardware and connection and finally the collection of data from the detector through code for the Arduinio. To obtain real time air pollution data (in PPM), we have taken reading using our customized sensor- detector in different environmental pollutions. We have used cigarette smoke, coil burning smoke, vehicle smoke from street etc. The following values depicts for mosquito coil within 1 meter. From this data analysis we can conclude that for mosquito coil it is safe to be far from the coil while burning atleast 2 or 3 meters

Time(second)	Value(ppm)	Distance(meter)
02	74(Fresh air)	0.5
04	125(Polluted air)	0.3
06	96(Polluted air)	0.4
08	170(Polluted air)	0.2
10	79(Fresh air)	0.6
12	80(Fresh air)	0.55
14	70(Fresh air)	0.8

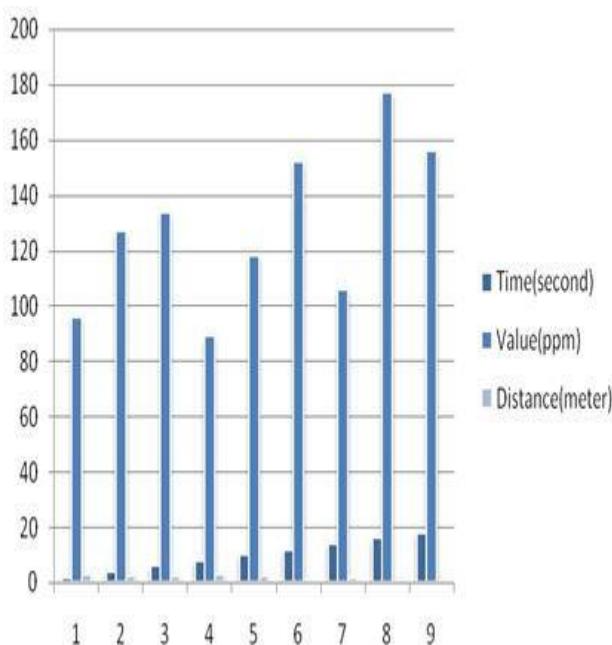
Time(second)	Value(ppm)	Distance(meter)
02	172(Polluted air)	3
04	281(Very Polluted air)	2.3
06	285(Very Polluted air)	2.2
08	233(Very Polluted air)	2.5
10	224(Very Polluted air)	2.1
12	199(Polluted air)	2.7
14	284(Very Polluted air)	1.9
16	246(Very Polluted air)	1.3



Fig 4: Graphical representation of mosquito coil smoke indetector.

For motorcycle smoke, we took values within 3 meters. From the values, we can say that the most polluted area thin 3 meters. So, it is safe to keep at least 5-meter distance from the motor cycle when running.

Time(second)	Value(ppm)	Distance(meter)
02	96 (Polluted air)	3
04	127 (Polluted air)	2.5
06	134 (Polluted air)	2.4
08	89 (Polluted air)	2.8
10	118 (Polluted air)	2.2
12	152 (Polluted air)	1.5
14	106 (Polluted air)	1.9
16	177 (Polluted air)	1.3
18	156 (Polluted air)	1.4
20	195 (Polluted air)	Less than 1


We have defined the system of hardware and software that maps in real-time, also the data plotting software is illustrated the standard mechanism monitored by air quality monitoring. Finally, the data collection from the detector system is authenticated. This sensor-based system can easily be employed to monitor air quality.

CONCLUSION

We have developed an Arduino based air pollution detector which is a very effective air pollution monitoring system. Based on the performance we can say that it is easy to use, and functionality is comparable to the expensive existing air pollution detectors. It is a microcontroller based portable system. It is efficient and user-friendly air quality detection system.

Conflict of Interest: The authors declare that they have no conflict of interest.

Ethical approval: This article does not contain any studies with animals performed by any of the authors.

REFERENCES

Kumara, Siva, and Arun, Krishna. "Embedded System Based Air Pollution Detection in Vehicles." 2015 was the year.

PIEdrahita et al. "The next generation of low-cost personal air quality sensors for quantitative exposure monitoring." *Research in Atmospheric Measurement Techniques*, volume 7, issue 10, 2014, pages 3325.

*[3] Sunyoung Kim, Eric Paulos, and Kim. "inAir: measuring and visualizing indoor air quality." An international conference on ubiquitous computing, eleventh in series. 2007 by ACM.

As stated by Al-Dahoud et al. [4]. "Monitoring Metropolitan City Air-quality Using Wireless Sensor Nodes based on ARDUINO and XBEE."

V. Venkatesa Kumar, M. S. Sruthi, Rajkumar, and M. Newlin [5]. "IOT Based Smart System for Controlling Co2 Emission." 2017 has passed.

5. Sunyoung Kim, Eric Paulos, and Kim, Eric. "InAir: sharing indoor air quality measurements and visualizations." *Human Factors in Computer Systems: SIGCHI 2010 Conference Proceedings*. ACM, 2010.

This is according to Chaitanya and Prasanna Kumar [7]. "AUTOMATED SYSTEM FOR AIR POLLUTION DETECTION AND CONTROL OF SPEED IN VEHICLES." Publication date: 2016-04-29, volume 9, issue 4, page 443.

Source: https://en.wikipedia.org/wiki/Air_pollution [8] Air pollution https://en.wikipedia.org/wiki/Air_pollution_sensor [9] and [10] explain how air pollution detectors work. Here is the link to the instructable: <http://www.instructables.com/id/Air-Pollution-Detector/>.